Skip to main content

A wide-range modeling approach for the thermal conductivity and dielectric function of solid and liquid aluminum

Abstract

This study aims at providing a simple method to obtain the electronic thermal conductivity of aluminum over a wide range of temperatures and densities in the crystalline solid as well as the disordered liquid phase. All calculations are based on first order perturbation theory and the pseudo-potential theory without resorting to ab-initio simulations. Wherever possible, the results are compared to experimental data or quantum molecular dynamics simulations. In addition a straightforward approach is demonstrated to estimate the complex permittivity from the Drude model.

This is a preview of subscription content, access via your institution.

References

  1. F. Bloch, Z. Phys. 59, 208 (1930)

    ADS  Article  Google Scholar 

  2. L. Spitzer, R. Härm, Phys. Rev. 89, 977 (1953)

    ADS  Article  Google Scholar 

  3. M.P. Desjarlais, J.D. Kress, L.A. Collins, Phys. Rev. E 66, 025401 (2002)

    ADS  Article  Google Scholar 

  4. P.L. Silvestrelli, Phys. Rev. B 60, 16382 (1999)

    ADS  Article  Google Scholar 

  5. R.P. Feynman, N. Metropolis, E. Teller, Phys. Rev. 75, 1561 (1949)

    ADS  Article  Google Scholar 

  6. A.F. Nikiforov, V.G. Novikov, V.B. Uvarov, Quantum-statistical self-consistent field models (Springer, 2005)

  7. P. Fromy, C. Deutsch, G. Maynard, Phys. Plasmas 3, 714 (1996)

    ADS  Article  Google Scholar 

  8. N. Mohankumar, A. Natarajan, Phys. Status Solidi B 188, 635 (1995)

    ADS  Article  Google Scholar 

  9. T. Fujimoto, R.W.P. McWhirter, Phys. Rev. A 42, 6588 (1990)

    ADS  Article  Google Scholar 

  10. D.G. Hummer, D. Mihalas, ApJ 331, 794 (1988)

    ADS  Article  Google Scholar 

  11. J.M. Ziman, D. Mihalas, Electrons and phonons (Oxford University Press, 1960)

  12. N.A. Inogamov, Y.V. Petrov, J. Exp. Theor. Phys. 110, 446 (2010)

    ADS  Article  Google Scholar 

  13. Y.V. Petrov, N.A. Inogamov, K.P. Migdal, JETP Lett. 97, 20 (2013)

    ADS  Article  Google Scholar 

  14. J. Bardeen, Phys. Rev. 52, 688 (1937)

    ADS  Article  Google Scholar 

  15. A.O.E. Animalu, V. Heine, Philos. Mag. 12, 1249 (1965)

    ADS  Article  Google Scholar 

  16. J.M. Ziman, Proc. R. Soc. London A 318, 401 (1970)

    ADS  Article  Google Scholar 

  17. A.O.E. Animalu, Phys. Rev. B 8, 3555 (1973)

    ADS  Article  Google Scholar 

  18. J. Lindhard, Kgl. Danske Videnskab. Selskab Mat.-fys. Medd. 28, 8 (1954)

    MathSciNet  Google Scholar 

  19. J. Hubbard, Proc. R. Soc. London A: Math. Phys. Eng. Sci. 243, 336 (1958)

    ADS  Article  Google Scholar 

  20. L. Kleinman, Phys. Rev. 160, 585 (1967)

    ADS  Article  Google Scholar 

  21. S. Ichimaru, K. Utsumi, Phys. Rev. B 24, 7385 (1981)

    ADS  Article  Google Scholar 

  22. J.M. Ziman, Philos. Mag. 6, 1013 (1961)

    ADS  Article  Google Scholar 

  23. J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1 (1958)

    ADS  MathSciNet  Article  Google Scholar 

  24. N.W. Ashcroft, J. Lekner, Phys. Rev. 145, 83 (1966)

    ADS  Article  Google Scholar 

  25. Y.V. Petrov, N.A. Inogamov, A.V. Mokshin, B.N. Galimzyanov, J. Phys.: Conf. Ser. 946, 12096 (2018)

    Google Scholar 

  26. V. Recoules, J.P. Crocombette, Phys. Rev. B 72, 1 (2005)

    Article  Google Scholar 

  27. G.R. Gathers, Int. J. Thermophys. 4, 209 (1983)

    ADS  Article  Google Scholar 

  28. Y.T. Lee, R.M. More, Phys. Fluids 27, 1273 (1984)

    ADS  Article  Google Scholar 

  29. M.E. Povarnitsyn, N.E. Andreev, E.M. Apfelbaum, T.E. Itina, K.V. Khishchenko, O.F. Kostenko, P.R. Levashov, M.E. Veysman, Appl. Surf. Sci. 258, 9480 (2012)

    ADS  Article  Google Scholar 

  30. A.E. Turrell, M. Sherlock, S.J. Rose, J. Comput. Phys. 249, 13 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  31. Y.V. Petrov, K.P. Migdal, N.A. Inogamov, S.I. Anisimov, JETP Lett. 104, 431 (2016)

    ADS  Article  Google Scholar 

  32. V.I. Mazhukin, Laser pulses-theory, technology, and applications (InTech, 2012)

  33. B. Huttner, J. Phys.: Condens. Matter 6, 2459 (1994)

    ADS  Google Scholar 

  34. D. Fisher, M. Fraenkel, Z. Henis, E. Moshe, S. Eliezer, Phys. Rev. E 65, 1 (2002)

    Google Scholar 

  35. N.W. Ashcroft, K. Sturm, Phys. Rev. B 3, 1898 (1971)

    ADS  Article  Google Scholar 

  36. N.A. Inogamov, V.V. Zhakhovskii, S.I. Ashitkov, V.A. Khokhlov, Y.V. Petrov, P.S. Komarov, M.B. Agranat, S.I. Anisimov, K. Nishihara, Appl. Surf. Sci. 255, 9712 (2009)

    ADS  Article  Google Scholar 

  37. J.P. Colombier, P. Combis, E. Audouard, R. Stoian, Phys. Rev. E 77, 1 (2008)

    Article  Google Scholar 

  38. M.E. Povarnitsyn, D.V. Knyazev, P.R. Levashov, Contrib. Plasma Phys. 52, 145 (2012)

    ADS  Article  Google Scholar 

  39. S. Krishnan, P.C. Nordine, Phys. Rev. B 47, 11780 (1993)

    ADS  Article  Google Scholar 

  40. N. Medvedev, Z. Li, V. Tkachenko, B. Ziaja, Phys. Rev. B 95, 014309 (2017)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugen Eisfeld.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Eisfeld, E., Trebin, HR. & Roth, J. A wide-range modeling approach for the thermal conductivity and dielectric function of solid and liquid aluminum. Eur. Phys. J. Spec. Top. 227, 1575–1590 (2019). https://doi.org/10.1140/epjst/e2019-800165-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800165-5