Skip to main content

Advertisement

Log in

Novel layered architecture based on Al2O3/ZrO2/BaTiO3 for SMART piezoceramic electromechanical converters

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The paper is focused on a very hot topic of SMART materials and their architectures for energy conversion systems designed for conversion of mechanical to electrical energy using the piezoelectric effect. The aim of the study is to increase both the reliability and efficiency of electromechanical conversion compared to standard concepts. Our new design of piezoelectric cantilever is made with multi-layer ceramic composite, where piezoelectric layer BaTiO3 is covered by protective ceramics layers of different residual stresses, where Al2O3 and ZrO2 is used. Utilization of controlled residual stresses into new multi-layer architecture is the key idea and it is crucial for optimal design of the individual layers of the proposed concept. The multi-layer ceramic composite is fabricated by electrophoretic deposition, where the composite is assembled from different ceramic materials during processing and after sintering we get inseparable ceramic laminate consisting of piezoelectric and protective layers of ceramics. This approach of processing multi-layer ceramic material including lead free piezoelectric layers is innovative and has never been published before.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Yi, W.Y. Shih, W.-H. Shih, J. Appl. Phys. 91, 1680 (2002)

    Article  ADS  Google Scholar 

  2. Y. Bai, P. Tofel, Z. Hadas et al., Mech. Syst. Signal Process. 106, 303 (2018)

    Article  ADS  Google Scholar 

  3. H.-C. Song, H.-C. Kim, C.-Y. Kang et al., J. Electroceram. 23, 301 (2009)

    Article  Google Scholar 

  4. K. Tungpimolrut, N. Hatti, J. Phontip et al., in 2011 International Symposium on Applications of Ferroelectrics (ISAF/PFM) and 2011 International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (IEEE, 2011), p. 1

  5. Y. Wang, W. Chen, P. Guzman, J. Intell. Mater. Syst. Struct. 27, 2324 (2016)

    Article  Google Scholar 

  6. M. Zielinski, F. Mieyeville, D. Navarro, O. Bareille, in Federated Conference on Computer Science and Information Systems, 2014, (IEEE, 2014), p. 1065

  7. Y. Bai, Z. Havránek, P. Tofel et al., Eur. Phys. J. Special Topics 224, 2675 (2015)

    Article  ADS  Google Scholar 

  8. O. Rubes, M. Brablc, Z. Hadas, Mech. Syst. Signal Process. 125, 170 (2019)

    Article  ADS  Google Scholar 

  9. T.-Y. Zhang, M. Zhao, P. Tong, Adv. Appl. Mech. 38, 147 (2002)

    Article  Google Scholar 

  10. H. Hadraba, D. Drdlik, Z. Chlup et al., J. Eur. Ceram. Soc. 32, 2053 (2012)

    Article  Google Scholar 

  11. H. Hadraba, Z. Chlup, D. Drdlik, J. Cihlar, J. Eur. Ceram. Soc. 36, 365 (2016)

    Article  Google Scholar 

  12. Z. Chlup, H. Hadraba, L. Slabáková et al., J. Eur. Ceram. Soc. 32, 2057 (2012)

    Article  Google Scholar 

  13. L. Sestakova, R. Bermejo, Z. Chlup, R. Danzer, Int. J. Mater. Res. 102, 613 (2011)

    Article  Google Scholar 

  14. P. Parente, Y. Ortega, B. Savoini et al., Acta. Mater. 58, 3014 (2010)

    Article  Google Scholar 

  15. M. Mehrali, H. Wakily, I.H.S.C. Metselaar, Adv. Appl. Ceram. 110, 35 (2011)

    Article  Google Scholar 

  16. K. Castkova, K. Maca, J. Cihlar et al., J. Am. Ceram. Soc. 98, 2373 (2015)

    Article  Google Scholar 

  17. Y. Jiang, T. Thongchai, Y. Bai et al., in IEEE International Ultrasonics Symposium, IUS (2014)

  18. Y. Bai, A. Matousek, P. Tofel et al., J. Eur. Ceram. Soc. 35, 3445 (2015)

    Article  Google Scholar 

  19. V. Bijalwan, P. Tofel, V. Holcman, J. Asian. Ceram. Soc. 6, 384 (2018)

    Article  Google Scholar 

  20. Y. Bai, P. Tofel, J. Palosaari et al., Adv. Mater. 29, 1700767 (2017)

    Article  Google Scholar 

  21. Y. Huan, X. Wang, J. Fang, L. Li, J. Am. Ceram. Soc. 96, 3369 (2013)

    Article  Google Scholar 

  22. Y. Huan, X. Wang, J. Fang, L. Li, J. Eur. Ceram. Soc. 34, 1445 (2014)

    Article  Google Scholar 

  23. J.C. Wang, P. Zheng, R.Q. Yin et al., Ceram. Int. 41, 14165 (2015)

    Article  Google Scholar 

  24. Y. Wu, J. Zhang, Y. Tan, P. Zheng, Ceram. Int. 42, 9815 (2016)

    Article  Google Scholar 

  25. L. Cheng, M. Sun, F. Ye et al., Int. J. Light. Mater. Manuf. 1, 126 (2018)

    Google Scholar 

  26. K. Maca, H. Hadraba, J. Cihlar, Ceram. Int. 30, 843 (2004)

    Google Scholar 

  27. H. Hadraba, K. Maca, J. Cihlar, Ceram. Int. 30, 853 (2004)

    Google Scholar 

  28. H. Hadraba, D. Drdlik, Z. Chlup et al., J. Eur. Ceram. Soc. 33, 2305 (2013)

    Article  Google Scholar 

  29. D. Benasciutti, L. Moro, S. Zelenika, E. Brusa, Microsyst. Technol. 16, 657 (2010)

    Article  Google Scholar 

  30. Z. Hadas, L. Janak, J. Smilek, Mech. Syst. Signal. Process. 110, 152 (2018)

    Article  ADS  Google Scholar 

  31. C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Energy Environ. Sci. 7, 25 (2014)

    Article  Google Scholar 

  32. T. Fett, D. Munz, Stress intensity factors and weight functions (Computational Mechanics Publications, Southampton, UK, Boston, MA, USA, 1997)

  33. H.F. Bueckner, Novel Principle for the Computation of Stress Intensity Factors (Akademie-Verlag GmbH, Berlin, 1970)

  34. M. Lugovy, V. Slyunyayev, N. Orlovskaya et al., Acta. Mater. 53, 289 (2005)

    Article  Google Scholar 

  35. T. Fett, D. Munz, Y.Y. Yang, Eng. Fract. Mech. 65, 393 (2000)

    Article  Google Scholar 

  36. L. Besra, M. Liu, Prog. Mater. Sci. 52, 1 (2007)

    Article  Google Scholar 

  37. N. Sato, M. Kawachi, K. Noto et al., Physica C 357, 1019 (2001)

    Article  ADS  Google Scholar 

  38. P.Z. Cai, D.J. Green, G.L. Messing, J. Am. Ceram. Soc. 80, 1929 (2005)

    Article  Google Scholar 

  39. K. Maca, V. Pouchly, D. Drdlik et al., J. Eur. Ceram. Soc. 37, 4287 (2017)

    Article  Google Scholar 

  40. L.-F. Zhu, B.-P. Zhang, J.-Q. Duan et al., J. Eur. Ceram. Soc. 38, 3463 (2018)

    Article  Google Scholar 

  41. S.J.L. Kang, Sintering: Densification, Grain Growth and Microstructure (Elsevier Science, 2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Tofel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tofel, P., Machu, Z., Chlup, Z. et al. Novel layered architecture based on Al2O3/ZrO2/BaTiO3 for SMART piezoceramic electromechanical converters. Eur. Phys. J. Spec. Top. 228, 1575–1588 (2019). https://doi.org/10.1140/epjst/e2019-800153-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800153-0

Navigation