Electrokinetic Onsager coefficients and energy conversion in deformable nanofluidic channels

Abstract

This work explores the nonlinear coupling between wall deformation and one-dimensional electrokinetic transport in a nanochannel with negatively charged walls. Within the framework of nonequilibrium thermodynamics, compact formulae are derived for the electrokinetic transport parameters in terms of Onsager phenomenological coefficients and, subsequently, for the energy conversion efficiency. Results confirm that Onsager’s reciprocity principle holds for rigid channels. However, the methodology used to reduce to 1D does not maintain the symmetry of Onsager’s matrix when the channel is deformed due to the introduction of a “fictitious” diffusion term of counter-ions. Furthermore, the model predicts a reduced efficiency of electrokinetic energy harvesting for channels with soft deformable walls.

This is a preview of subscription content, log in to check access.

Change history

  • 12 September 2019

    The original published article contains some errors which are corrected below.

  • 12 September 2019

    The original published article contains some errors which are corrected below.

References

  1. 1.

    H.L.F. Helmholtz, Wied. Ann. 7, 337 (1879)

    Article  Google Scholar 

  2. 2.

    M. Smoluchowski, Phys. Z. 6, 529 (1905)

    Google Scholar 

  3. 3.

    P. Berg, K. Ladipo, Proc. R. Soc. A 465, 2663 (2009)

    ADS  Article  Google Scholar 

  4. 4.

    P. Berg, J. Findlay, Proc. R. Soc. A 467, 3157 (2011)

    ADS  Article  Google Scholar 

  5. 5.

    K.O. Ladipo, P. Berg, S. Kimmerle, A. Novruzi, Int. J. Chem. Phys. 134, 074103 (2011)

    ADS  Article  Google Scholar 

  6. 6.

    A.J. Bard, L.R. Faulkner, Electrochemical methods: fundamentals and applications, 2nd edn. (Wiley, New York, 1980)

  7. 7.

    M.Z. Bazant, K. Thornton, A. Ajdari, Phys. Rev. E 70, 021506 (2004)

    ADS  Article  Google Scholar 

  8. 8.

    S. Prakash, A.T. Conlisk, Lab Chip 16, 3855 (2016)

    Article  Google Scholar 

  9. 9.

    S. Chung, O.S. Anderson, S. Olaf, V.V. Krishnamurthy, Biological membrane ion channels: dynamics, structure, and applications (Springer Science & Business Media, 2007)

  10. 10.

    S.J. Kim, S.H. Ko, K.H. Kang, H. Kwan, J. Han, Nat. Nanotechnol. 5, 297 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    M. Eikerling, A. Kulikovsky, Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation (CRC Press, 2014)

  12. 12.

    H. Daiguji, P. Yang, A.J. Szeri, A. Majumdar, Nano Lett. 4, 2315 (2004)

    ADS  Article  Google Scholar 

  13. 13.

    L. Onsager, Phys. Rev. 37, 405 (1931)

    ADS  Article  Google Scholar 

  14. 14.

    L. Onsager, Phys. Rev. 38, 2265 (1931)

    ADS  Article  Google Scholar 

  15. 15.

    B.J. Kirby, Micro- and nanoscale fluid mechanics: transport in microfluidic devices (Cambridge University Press, 2010)

  16. 16.

    F.F. Reuss, Mem. Soc. Imp. Natur. Moscou. 2, 327 (1809)

    Google Scholar 

  17. 17.

    G. Quincke, Pogg. Ann. Phys. 107, 1 (1859)

    ADS  Google Scholar 

  18. 18.

    K. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637 (2004)

    Article  Google Scholar 

  19. 19.

    M. Eikerling, A.A. Kornyshev, E. Spohr, Adv. Polym. Sci. 215, 15 (2008)

    Google Scholar 

  20. 20.

    S.G. Rinaldo, C.W. Monroe, T. Romero, W. Mérida, M. Eikerling, Electrochem. Commun. 33, 5 (2011)

    Article  Google Scholar 

  21. 21.

    M. Eikerling, P. Berg, Soft Matter 7, 5976 (2011)

    ADS  Article  Google Scholar 

  22. 22.

    M. Safiollah, P.A. Melchy, P. Berg, M. Eikerling, J. Phys. Chem. B 119, 8165 (2015)

    Article  Google Scholar 

  23. 23.

    A.Z. Weber, J. Newman, Chem. Rev. 104, 4679 (2004)

    Article  Google Scholar 

  24. 24.

    M. Eikerling, A. Kulikovsky, Polymer Electrolyte Fuel Cells: Physical Principles of Materials and Operation (CRC Press, 2014)

  25. 25.

    A. Kusoglu, M.H. Santare, M.A. Karlsson, J. Polym. Sci. Part B: Polym. Phys. 49, 1506 (2011)

    ADS  Article  Google Scholar 

  26. 26.

    P.-E.A. Melchy, M.H. Eikerling, J. Phys.: Condens. Matter 27, 325103 (2015)

    Google Scholar 

  27. 27.

    K. Oguro, N. Fujiwara, K. Asaka, K. Onishi, S. Sewa, Electr. Polym. Actuat. Dev. 3669, 64 (1999)

    Google Scholar 

  28. 28.

    N. Fujiwara, K. Asaka, Y. Nishimura, K. Oguro, E. Torikai, Chem. Mater. 12, 1750 (1999)

    Article  Google Scholar 

  29. 29.

    A.J. Duncan, D.J. Leo, T.E. Long, Macromolecules 41, 7765 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    Z. Peng, A. Morin, P. Huguet, P. Schott, J. Pauchet, J. Phys. Chem. B 115, 12835 (2011)

    Article  Google Scholar 

  31. 31.

    J.B. Benziger, M.J. Cheah, V. Klika, M. Pavelka, J. Polym. Sci. Part B: Polym. Phys. 53, 1580 (2015)

    ADS  Article  Google Scholar 

  32. 32.

    M. Matse, P. Berg, M. Eikerling, Phys. Rev. E 98, 053101 (2018)

    ADS  Article  Google Scholar 

  33. 33.

    P.B. Peters, R. van Roij, M.Z. Bazant, P.M. Biesheuvel, Phys. Rev. E 93, 053108 (2016)

    ADS  Article  Google Scholar 

  34. 34.

    F.A. Morrison Jr., J.F. Osterle, J. Chem. Phys. 43, 2111 (1965)

    ADS  Article  Google Scholar 

  35. 35.

    Y. Zhang, Y. He, M. Tsutsui, X.S. Miao, M. Taniguchi, Sci. Rep. 7, 46661 (2017)

    ADS  Article  Google Scholar 

  36. 36.

    J. Yang, F. Lu, L.W. Kostiuk, D.Y. Kwok, J. Micromech. Microeng. 13, 963 (2003)

    ADS  Article  Google Scholar 

  37. 37.

    Y. Xie, X. Wang, J. Jin, K. Chen, Y. Wang, Appl. Phys. Lett. 93, 163116 (2008)

    ADS  Article  Google Scholar 

  38. 38.

    C.C. Chang, R.J. Yang, Microfluid. Nanofluid. 9, 225 (2010)

    Article  Google Scholar 

  39. 39.

    Y. Yan, Q. Sheng, C. Wang, J. Xue, H.C. Chang, J. Phys. Chem. C 117, 8050 (2013)

    Article  Google Scholar 

  40. 40.

    C. Bakli, S. Chakraborty, Electrophoresis 36, 675 (2015)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mpumelelo Matse.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matse, M., Eikerling, M. & Berg, P. Electrokinetic Onsager coefficients and energy conversion in deformable nanofluidic channels. Eur. Phys. J. Spec. Top. 227, 2559–2573 (2019). https://doi.org/10.1140/epjst/e2019-800137-2

Download citation