Skip to main content
Log in

Bell inequality violation in the framework of a Darwinian approach to quantum mechanics

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A fundamental particle in physical space subject to conservation of momentum and energy, and characterized by its average mass and its position is methodologically supplemented with an information processor – a classical Turing machine – and a randomizer both defined on an information space localized on every particle. In this way the particle can be considered a generalized Darwinian system on which natural selection could act steering the evolution on the information space of the algorithms that govern the behaviour of the particles, giving rise plausibly to emergent quantum behaviour from initial randomness. This theory is applied to an EPR-Bohm experiment for electrons in order to analyse Bell inequality violation. A model for the entanglement of two particles has been considered. The model includes shared randomness – each particle stores its own randomizer and that of its partner – and the mutual transfer of their algorithms – sharing programs – that contain their respective anticipation modules. This fact enables every particle to anticipate not only the possible future configurations of its surrounding systems, but also those of the surrounding systems of its entangled partner. Thus, while preserving locality and realism, this theory implies outcome dependence – through shared randomness – and parameter dependence – through shared anticipation – for entangled states and, as a consequence, the violation of the Bell inequality in an EPR-Bohm experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Shimony, in The Stanford Encyclopedia of Philosophy, Fall 2017 edn., edited by E.N. Zalta. Available at https://doi.org/plato.stanford.edu/archives/fall2017/entries/bell-theorem/

  2. S.J. Freedman, J.F. Clauser, Phys. Rev. Lett. 28, 938 (1972)

    Article  ADS  Google Scholar 

  3. E.S. Fry, R.C. Thompson, Phys. Rev. Lett. 37, 465 (1976)

    Article  ADS  Google Scholar 

  4. A. Aspect, P. Grangier, G. Roger, Phys. Rev. Lett. 49, 91 (1982)

    Article  ADS  Google Scholar 

  5. M. Giustina, M.A.M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan et al., Phys. Rev. Lett. 115, 250401 (2015)

    Article  ADS  Google Scholar 

  6. B. Hensen, H. Bernien, A.E. Dréau, A. Reiserer, N. Kalb, M.S. Blok et al., Nature 526, 682 (2015)

    Article  ADS  Google Scholar 

  7. L.K. Shalm, E. Meyer-Scott, B.G. Christensen, P. Bierhorst, M.A. Wayne, M.J. Stevenset al., Phys. Rev. Lett. 115, 250402 (2015)

    Article  ADS  Google Scholar 

  8. T. Maudlin, J. Phys. A: Math. Theor. 47, 424010 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. K. Hess, H. De Raedt, K. Michielsen, https://doi.org/arXiv:1605.04889 (2016)

  10. M. Kupczynski, Phys. Lett. A 116, 417 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Khrennikov, Theoret. Math. Phys. 157, 1448 (2008)

    Article  MathSciNet  Google Scholar 

  12. T.M. Nieuwenhuizen, Found. Phys. 41, 580 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  13. L. de la Peña, A.M. Cetto, A. Valdés Hernández, The Emerging Quantum: The Physics Behind Quantum Mechanics (Springer, Berlin, 2015)

  14. G. Groessing, S. Fussy, J. Mesa Pascasio, H. Schwabl, https://doi.org/arXiv:1403.3295 [quant-ph] (2014)

  15. L. Vervoort, Found. Phys. 48, 803 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  16. A. Whitaker, Am. J. Phys. 84, 493 (2016)

    Article  ADS  Google Scholar 

  17. J. Bell, in The Ghost in the Atom, edited by P.C.W. Davies, J.R. Brown (Cambridge University Press, 1986), p. 73

  18. G. ’tHooft, https://doi.org/arXiv:quant-ph/0701097 (2007)

  19. L. Vervoort, https://doi.org/arXiv:1403.0145 [quant-ph] (2014)

  20. R. Healey, in The Stanford Encyclopedia of Philosophy, Winter 2016 edn., edited by E.N. Zalta. Available at https://doi.org/plato.stanford.edu/archives/win2016/entries/quantum-bayesian/

  21. L. Vaidman, in The Stanford Encyclopedia of Philosophy, Fall 2016 edn., edited by E.N. Zalta. Available at https://doi.org/plato.stanford.edu/archives/fall2016/entries/qm-manyworlds/

  22. Y. Aharonov, S. Popescu, J. Tollaksen, Phys. Today 63, 27 (2010)

    Google Scholar 

  23. W. Mückenheim, Phys. Rep. 133, 337 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  24. C. Baladrón, A. Khrennikov, in Quantum Foundations, Probability and Information, edited by A. Khrennikov, B. Toni (Springer, Cham, 2018)

  25. D. Jennings, M. Leifer, Contemp. Phys. 57, 60 (2016)

    Article  ADS  Google Scholar 

  26. F. Laudisa, Eur. J. Philos. Sci. 4, 1 (2014)

    Article  Google Scholar 

  27. A. Khrennikov, Fortsch. Phys. 65, 6 (2017)

    Article  ADS  Google Scholar 

  28. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Phys. Rep. 525, 1 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  29. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Ann. Phys. 376, 324 (2017)

    Article  ADS  Google Scholar 

  30. C. Baladrón, in Quantum Foundations and Open Quantum Systems, edited by T. Nieuwenhuizen, et al. (World Scientific, Singapore, 2015)

  31. C. Baladrón, A. Khrennikov, BioSystems 150, 13 (2016)

    Article  Google Scholar 

  32. C. Baladrón, Fortsch. Phys. 65, 6 (2017)

    Article  MathSciNet  Google Scholar 

  33. C. Baladrón, A. Khrennikov, Prog. Biophys. Mol. Biol. 130, 80 (2017)

    Article  Google Scholar 

  34. D. Barker-Plummer, in The Stanford Encyclopedia of Philosophy, Winter 2016 edn., edited by E.N. Zalta. Available at https://doi.org/plato.stanford.edu/archives/win2016/entries/turing-machine/

  35. S. Hossenfelder, https://doi.org/arXiv:1202.0720 [physics.hist-ph] (2012)

  36. S. Wolfram, A New Kind of Science (Wolfram Media, 2002)

  37. C.G. Timpson, https://doi.org/arXiv:quant-ph/0412063 (2004)

  38. S. Goldstein, in The Stanford Encyclopedia of Philosophy, Fall 2016 edn., edited by E.N. Zalta. Available at https://doi.org/plato.stanford.edu/archives/fall2016/entries/qm-bohm/

  39. T. Norsen, Am. J. Phys. 82, 337 (2014)

    Article  ADS  Google Scholar 

  40. D. Bohm, Annales de l’I.H.P. Physique théorique 49, 287 (1988)

    Google Scholar 

  41. M.J.W.Hall, Phys. Rev. A 84, 022102 (2011)

    Article  ADS  Google Scholar 

  42. A.J. Lotka, Proc. Natl. Acad. Sci. 8, 151 (1922)

    Article  ADS  Google Scholar 

  43. A.N. Whitehead, Process and Reality (Macmillan, New York, 1929)

  44. J.A. Wheeler, in Complexity, Entropy, and the Physics of Information, edited by W.H. Zurek (Addison-Wesley, Redwood City, CA, 1990)

  45. L. Smolin, https://doi.org/arXiv:hep-th/0612185 (2006)

  46. W.H. Zurek, Nat. Phys. 5, 181 (2009)

    Article  Google Scholar 

  47. B.R. Frieden, Am. J. Phys. 57, 1004 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  48. J.M. Honig, J. Chem. Educ. 86, 116 (2009)

    Article  Google Scholar 

  49. S. Aerts, Int. J. Theor. Phys. 47, 2 (2008)

    Article  Google Scholar 

  50. H. De Raedt, M.I. Katsnelson, K. Michielsen, https://doi.org/arXiv:1303.4574 [quant-ph] (2013)

  51. H. De Raedt, M.I. Katsnelson, H.C. Donkerb, K. Michielsen, Ann. Phys. 359, 166 (2015)

    Article  Google Scholar 

  52. J. Summhammer, Int. J. Theor. Phys. 33, 171 (1994)

    Article  MathSciNet  Google Scholar 

  53. J. Summhammer, https://doi.org/arXiv:quant-ph/0701181 (2007)

  54. S. Perrard, M. Labousse, M. Miskin, E. Fort, Y. Couder, Nat. Commun. 5, 3219 (2014)

    Article  ADS  Google Scholar 

  55. S. Perrard, E. Fort, Y. Couder, Phys. Rev. Lett. 117, 094502 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  56. K. Chatterjee, A. Pavlogiannis, B. Adlam, M.A. Nowak, https://doi.org/hal-00907940(2013)

  57. A. Valentini, J. Phys. A: Math. Theor. 40, 3285 (2007)

    Article  ADS  Google Scholar 

  58. M. Asano, A. Khrennikov, M. Ohya, Y. Tanaka, I. Yamato, Quantum Adaptivity in Biology: from Genetics to Cognition (Springer, Heidelberg, Berlin, New York, 2014)

  59. M. Asano, I. Basieva, A. Khrennikov, M. Ohya, Y. Tanaka, I. Yamato, Found. Phys. 45, 1362 (2015)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Baladrón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baladrón, C., Khrennikov, A. Bell inequality violation in the framework of a Darwinian approach to quantum mechanics. Eur. Phys. J. Spec. Top. 227, 2119–2132 (2019). https://doi.org/10.1140/epjst/e2019-800061-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800061-1

Navigation