Skip to main content

Are quantum thermodynamic machines better than their classical counterparts?

Abstract

Interesting effects arise in cyclic machines where both heat and ergotropy transfer take place between the energising bath and the system (the working fluid). Such effects correspond to unconventional decompositions of energy exchange between the bath and the system into heat and work, respectively, resulting in efficiency bounds that may surpass the Carnot efficiency. However, these effects are not directly linked with quantumness, but rather with heat and ergotropy, the likes of which can be realised without resorting to quantum mechanics.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H.E.D. Scovil, E.O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959)

    ADS  Article  Google Scholar 

  2. 2.

    W. Pusz, S.L. Woronowicz, Commun. Math. Phys. 58, 273 (1978)

    ADS  Article  Google Scholar 

  3. 3.

    A. Lenard, J. Stat. Phys. 19, 575 (1978)

    ADS  Article  Google Scholar 

  4. 4.

    R. Alicki, J. Phys. A 12, L103 (1979)

    ADS  Article  Google Scholar 

  5. 5.

    R. Kosloff, J. Chem. Phys. 80, 1625 (1984)

    ADS  Article  Google Scholar 

  6. 6.

    M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    ADS  Article  Google Scholar 

  7. 7.

    A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Europhys. Lett. 67, 565 (2004)

    ADS  Article  Google Scholar 

  8. 8.

    N. Erez, G. Gordon, M. Nest, G. Kurizki, Nature 452, 724 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    L. Del Rio, J. Aberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61 (2011)

    Article  Google Scholar 

  10. 10.

    M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2059 (2013)

    ADS  Article  Google Scholar 

  11. 11.

    L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Sci. Rep. 4, 3949 (2014)

    ADS  Article  Google Scholar 

  12. 12.

    P. Skrzypczyk, A.J. Short, S. Popescu, Nat. Commun. 5, 4185 (2014)

    ADS  Article  Google Scholar 

  13. 13.

    F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. USA 112, 3275 (2015)

    ADS  Article  Google Scholar 

  14. 14.

    J.P. Pekola, Nat. Phys. 11, 118 (2015)

    Article  Google Scholar 

  15. 15.

    R. Uzdin, A. Levy, R. Koslo, Phys. Rev. X 5, 031044 (2015)

    Google Scholar 

  16. 16.

    M. Campisi, R. Fazio, Nat. Commun. 7, 11895 (2016)

    ADS  Article  Google Scholar 

  17. 17.

    J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, Science 352, 325 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    R. Kosloff, Entropy 15, 2100 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    D. Gelbwaser-Klimovsky, W. Niedenzu, G. Kurizki, Adv. At. Mol. Opt. Phys. 64, 329 (2015)

    ADS  Article  Google Scholar 

  20. 20.

    J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A 49, 143001 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  21. 21.

    S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 1 (2016)

    Article  Google Scholar 

  22. 22.

    R. Kosloff, Y. Rezek, Entropy 19, 136 (2017)

    ADS  Article  Google Scholar 

  23. 23.

    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. E 87, 012140 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Europhys. Lett. 103, 60005 (2013)

    ADS  Article  Google Scholar 

  25. 25.

    D. Gelbwaser-Klimovsky, G. Kurizki, Phys. Rev. E 90, 022102 (2014)

    ADS  Article  Google Scholar 

  26. 26.

    W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, New J. Phys. 18, 083012 (2016)

    ADS  Article  Google Scholar 

  27. 27.

    C.B. Dağ, W. Niedenzu, O.E. Müstecapl"i"oğlu, G. Kurizki, Entropy 18, 244 (2016)

    ADS  Article  Google Scholar 

  28. 28.

    V. Mukherjee, W. Niedenzu, A.G. Kofman, G. Kurizki, Phys. Rev. E 94, 062109 (2016)

    ADS  Article  Google Scholar 

  29. 29.

    A. Ghosh, C.L. Latune, L. Davidovich, G. Kurizki, Proc. Natl. Acad. Sci. U.S.A. 114, 12156 (2017)

    ADS  Article  Google Scholar 

  30. 30.

    A. Ghosh, D. Gelbwaser-Klimovsky, W. Niedenzu, A.I. Lvovsky, I. Mazets, M.O. Scully, G. Kurizki, Proc. Natl. Acad. Sci. U.S.A. 115, 9941 (2018)

    ADS  Article  Google Scholar 

  31. 31.

    W. Niedenzu, V. Mukherjee, A. Ghosh, A.G. Kofman, G. Kurizki, Nat. Commun. 9, 165 (2018)

    ADS  Article  Google Scholar 

  32. 32.

    A. Ghosh, W. Niedenzu, V. Mukherjee, G. Kurizki, in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. Correa, C. Gogolin, J. Anders, G. Adesso (Springer International Publishing, 2019), pp. 1–30

  33. 33.

    A. del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014)

    Article  Google Scholar 

  34. 34.

    M. Kolar, D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. Lett. 109, 090601 (2012)

    ADS  Article  Google Scholar 

  35. 35.

    R. Dillenschneider, E. Lutz, Europhys. Lett. 88, 50003 (2009)

    ADS  Article  Google Scholar 

  36. 36.

    X.L. Huang, T. Wang, X.X. Yi, Phys. Rev. E 86, 051105 (2012)

    ADS  Article  Google Scholar 

  37. 37.

    O. Abah, E. Lutz, Europhys. Lett. 106, 20001 (2014)

    ADS  Article  Google Scholar 

  38. 38.

    J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014)

    ADS  Article  Google Scholar 

  39. 39.

    G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Phys. Rev. E 93, 052120 (2016)

    ADS  Article  Google Scholar 

  40. 40.

    A.Ü.C. Hardal, O.E. Müstecapl"i"oğlu, Sci. Rep. 5, 12953 (2015)

    ADS  Article  Google Scholar 

  41. 41.

    J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Phys. Rev. X 7, 031044 (2017)

    Google Scholar 

  42. 42.

    B.K. Agarwalla, J.-H. Jiang, D. Segal, Phys. Rev. B 96, 104304 (2017)

    ADS  Article  Google Scholar 

  43. 43.

    S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance (Bachelier, Paris, 1824)

  44. 44.

    P. Talkner, P. Hänggi, Phys. Rev. E 93, 022131 (2016)

    ADS  Article  Google Scholar 

  45. 45.

    E. Bäumer, M. Lostaglio, M. Perarnau-Llobet, R. Sampaio, Fluctuating work in coherentquantum systems: proposals and limitations, https://doi.org/arXiv:1805.10096 (2018)

  46. 46.

    P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007)

    ADS  Article  Google Scholar 

  47. 47.

    P. Hänggi, P. Talkner, Nat. Phys. 11, 108 (2015)

    Article  Google Scholar 

  48. 48.

    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011)

    ADS  Article  Google Scholar 

  49. 49.

    M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 1653 (2011)

    ADS  Article  Google Scholar 

  50. 50.

    M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009)

    ADS  Article  Google Scholar 

  51. 51.

    M. Perarnau-Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, Phys. Rev. Lett. 118, 070601 (2017)

    ADS  Article  Google Scholar 

  52. 52.

    V. Chernyak, S. Mukamel, Phys. Rev. Lett. 93, 048302 (2004)

    ADS  Article  Google Scholar 

  53. 53.

    A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. E 71, 066102 (2005)

    ADS  Article  Google Scholar 

  54. 54.

    M.F. Gelin, D.S. Kosov, Phys. Rev. E 78, 011116 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  55. 55.

    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002)

  56. 56.

    B.P. Venkatesh, G. Watanabe, P. Talkner, New J. Phys. 17, 075018 (2015)

    Article  Google Scholar 

  57. 57.

    H. Spohn, J. Math. Phys. 19, 1227 (1978)

    ADS  Article  Google Scholar 

  58. 58.

    F. Binder, L. Correa, C. Gogolin, J. Anders, G. Adesso, Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, Fundamental Theories of Physics (Springer International Publishing, 2019)

  59. 59.

    R. Clausius, Die mechanische Wärmetheorie, Erster Band, 3rd edn. (Friedrich Vieweg und Sohn, Braunschweig, 1887)

  60. 60.

    H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (John Wiley & Sons, Inc., New York, 1985)

  61. 61.

    M.S. Kim, F.A.M. de Oliveira, P.L. Knight, Phys. Rev. A 40, 2494 (1989)

    ADS  Article  Google Scholar 

  62. 62.

    W. Niedenzu, G. Kurizki, New J. Phys. 20, 113038 (2018)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gershon Kurizki.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Mukherjee, V., Niedenzu, W. et al. Are quantum thermodynamic machines better than their classical counterparts?. Eur. Phys. J. Spec. Top. 227, 2043–2051 (2019). https://doi.org/10.1140/epjst/e2019-800060-7

Download citation