Skip to main content

Advertisement

Log in

Are quantum thermodynamic machines better than their classical counterparts?

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Interesting effects arise in cyclic machines where both heat and ergotropy transfer take place between the energising bath and the system (the working fluid). Such effects correspond to unconventional decompositions of energy exchange between the bath and the system into heat and work, respectively, resulting in efficiency bounds that may surpass the Carnot efficiency. However, these effects are not directly linked with quantumness, but rather with heat and ergotropy, the likes of which can be realised without resorting to quantum mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H.E.D. Scovil, E.O. Schulz-DuBois, Phys. Rev. Lett. 2, 262 (1959)

    Article  ADS  Google Scholar 

  2. W. Pusz, S.L. Woronowicz, Commun. Math. Phys. 58, 273 (1978)

    Article  ADS  Google Scholar 

  3. A. Lenard, J. Stat. Phys. 19, 575 (1978)

    Article  ADS  Google Scholar 

  4. R. Alicki, J. Phys. A 12, L103 (1979)

    Article  ADS  Google Scholar 

  5. R. Kosloff, J. Chem. Phys. 80, 1625 (1984)

    Article  ADS  Google Scholar 

  6. M.O. Scully, M.S. Zubairy, G.S. Agarwal, H. Walther, Science 299, 862 (2003)

    Article  ADS  Google Scholar 

  7. A.E. Allahverdyan, R. Balian, T.M. Nieuwenhuizen, Europhys. Lett. 67, 565 (2004)

    Article  ADS  Google Scholar 

  8. N. Erez, G. Gordon, M. Nest, G. Kurizki, Nature 452, 724 (2008)

    Article  ADS  Google Scholar 

  9. L. Del Rio, J. Aberg, R. Renner, O. Dahlsten, V. Vedral, Nature 474, 61 (2011)

    Article  Google Scholar 

  10. M. Horodecki, J. Oppenheim, Nat. Commun. 4, 2059 (2013)

    Article  ADS  Google Scholar 

  11. L.A. Correa, J.P. Palao, D. Alonso, G. Adesso, Sci. Rep. 4, 3949 (2014)

    Article  ADS  Google Scholar 

  12. P. Skrzypczyk, A.J. Short, S. Popescu, Nat. Commun. 5, 4185 (2014)

    Article  ADS  Google Scholar 

  13. F. Brandão, M. Horodecki, N. Ng, J. Oppenheim, S. Wehner, Proc. Natl. Acad. Sci. USA 112, 3275 (2015)

    Article  ADS  Google Scholar 

  14. J.P. Pekola, Nat. Phys. 11, 118 (2015)

    Article  Google Scholar 

  15. R. Uzdin, A. Levy, R. Koslo, Phys. Rev. X 5, 031044 (2015)

    Google Scholar 

  16. M. Campisi, R. Fazio, Nat. Commun. 7, 11895 (2016)

    Article  ADS  Google Scholar 

  17. J. Roßnagel, S.T. Dawkins, K.N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, K. Singer, Science 352, 325 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. R. Kosloff, Entropy 15, 2100 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  19. D. Gelbwaser-Klimovsky, W. Niedenzu, G. Kurizki, Adv. At. Mol. Opt. Phys. 64, 329 (2015)

    Article  ADS  Google Scholar 

  20. J. Goold, M. Huber, A. Riera, L. del Rio, P. Skrzypczyk, J. Phys. A 49, 143001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. S. Vinjanampathy, J. Anders, Contemp. Phys. 57, 1 (2016)

    Article  Google Scholar 

  22. R. Kosloff, Y. Rezek, Entropy 19, 136 (2017)

    Article  ADS  Google Scholar 

  23. D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. E 87, 012140 (2013)

    Article  ADS  Google Scholar 

  24. D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Europhys. Lett. 103, 60005 (2013)

    Article  ADS  Google Scholar 

  25. D. Gelbwaser-Klimovsky, G. Kurizki, Phys. Rev. E 90, 022102 (2014)

    Article  ADS  Google Scholar 

  26. W. Niedenzu, D. Gelbwaser-Klimovsky, A.G. Kofman, G. Kurizki, New J. Phys. 18, 083012 (2016)

    Article  ADS  Google Scholar 

  27. C.B. Dağ, W. Niedenzu, O.E. Müstecapl"i"oğlu, G. Kurizki, Entropy 18, 244 (2016)

    Article  ADS  Google Scholar 

  28. V. Mukherjee, W. Niedenzu, A.G. Kofman, G. Kurizki, Phys. Rev. E 94, 062109 (2016)

    Article  ADS  Google Scholar 

  29. A. Ghosh, C.L. Latune, L. Davidovich, G. Kurizki, Proc. Natl. Acad. Sci. U.S.A. 114, 12156 (2017)

    Article  ADS  Google Scholar 

  30. A. Ghosh, D. Gelbwaser-Klimovsky, W. Niedenzu, A.I. Lvovsky, I. Mazets, M.O. Scully, G. Kurizki, Proc. Natl. Acad. Sci. U.S.A. 115, 9941 (2018)

    Article  ADS  Google Scholar 

  31. W. Niedenzu, V. Mukherjee, A. Ghosh, A.G. Kofman, G. Kurizki, Nat. Commun. 9, 165 (2018)

    Article  ADS  Google Scholar 

  32. A. Ghosh, W. Niedenzu, V. Mukherjee, G. Kurizki, in Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, edited by F. Binder, L. Correa, C. Gogolin, J. Anders, G. Adesso (Springer International Publishing, 2019), pp. 1–30

  33. A. del Campo, J. Goold, M. Paternostro, Sci. Rep. 4, 6208 (2014)

    Article  Google Scholar 

  34. M. Kolar, D. Gelbwaser-Klimovsky, R. Alicki, G. Kurizki, Phys. Rev. Lett. 109, 090601 (2012)

    Article  ADS  Google Scholar 

  35. R. Dillenschneider, E. Lutz, Europhys. Lett. 88, 50003 (2009)

    Article  ADS  Google Scholar 

  36. X.L. Huang, T. Wang, X.X. Yi, Phys. Rev. E 86, 051105 (2012)

    Article  ADS  Google Scholar 

  37. O. Abah, E. Lutz, Europhys. Lett. 106, 20001 (2014)

    Article  ADS  Google Scholar 

  38. J. Roßnagel, O. Abah, F. Schmidt-Kaler, K. Singer, E. Lutz, Phys. Rev. Lett. 112, 030602 (2014)

    Article  ADS  Google Scholar 

  39. G. Manzano, F. Galve, R. Zambrini, J.M.R. Parrondo, Phys. Rev. E 93, 052120 (2016)

    Article  ADS  Google Scholar 

  40. A.Ü.C. Hardal, O.E. Müstecapl"i"oğlu, Sci. Rep. 5, 12953 (2015)

    Article  ADS  Google Scholar 

  41. J. Klaers, S. Faelt, A. Imamoglu, E. Togan, Phys. Rev. X 7, 031044 (2017)

    Google Scholar 

  42. B.K. Agarwalla, J.-H. Jiang, D. Segal, Phys. Rev. B 96, 104304 (2017)

    Article  ADS  Google Scholar 

  43. S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance (Bachelier, Paris, 1824)

  44. P. Talkner, P. Hänggi, Phys. Rev. E 93, 022131 (2016)

    Article  ADS  Google Scholar 

  45. E. Bäumer, M. Lostaglio, M. Perarnau-Llobet, R. Sampaio, Fluctuating work in coherentquantum systems: proposals and limitations, https://doi.org/arXiv:1805.10096 (2018)

  46. P. Talkner, E. Lutz, P. Hänggi, Phys. Rev. E 75, 050102 (2007)

    Article  ADS  Google Scholar 

  47. P. Hänggi, P. Talkner, Nat. Phys. 11, 108 (2015)

    Article  Google Scholar 

  48. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 771 (2011)

    Article  ADS  Google Scholar 

  49. M. Campisi, P. Hänggi, P. Talkner, Rev. Mod. Phys. 83, 1653 (2011)

    Article  ADS  Google Scholar 

  50. M. Campisi, P. Talkner, P. Hänggi, Phys. Rev. Lett. 102, 210401 (2009)

    Article  ADS  Google Scholar 

  51. M. Perarnau-Llobet, E. Bäumer, K.V. Hovhannisyan, M. Huber, A. Acin, Phys. Rev. Lett. 118, 070601 (2017)

    Article  ADS  Google Scholar 

  52. V. Chernyak, S. Mukamel, Phys. Rev. Lett. 93, 048302 (2004)

    Article  ADS  Google Scholar 

  53. A.E. Allahverdyan, T.M. Nieuwenhuizen, Phys. Rev. E 71, 066102 (2005)

    Article  ADS  Google Scholar 

  54. M.F. Gelin, D.S. Kosov, Phys. Rev. E 78, 011116 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  55. H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, 2002)

  56. B.P. Venkatesh, G. Watanabe, P. Talkner, New J. Phys. 17, 075018 (2015)

    Article  Google Scholar 

  57. H. Spohn, J. Math. Phys. 19, 1227 (1978)

    Article  ADS  Google Scholar 

  58. F. Binder, L. Correa, C. Gogolin, J. Anders, G. Adesso, Thermodynamics in the Quantum Regime: Fundamental Aspects and New Directions, Fundamental Theories of Physics (Springer International Publishing, 2019)

  59. R. Clausius, Die mechanische Wärmetheorie, Erster Band, 3rd edn. (Friedrich Vieweg und Sohn, Braunschweig, 1887)

  60. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics, 2nd edn. (John Wiley & Sons, Inc., New York, 1985)

  61. M.S. Kim, F.A.M. de Oliveira, P.L. Knight, Phys. Rev. A 40, 2494 (1989)

    Article  ADS  Google Scholar 

  62. W. Niedenzu, G. Kurizki, New J. Phys. 20, 113038 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gershon Kurizki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Mukherjee, V., Niedenzu, W. et al. Are quantum thermodynamic machines better than their classical counterparts?. Eur. Phys. J. Spec. Top. 227, 2043–2051 (2019). https://doi.org/10.1140/epjst/e2019-800060-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2019-800060-7

Navigation