Multi-partite entanglement in Davies environment

  • Konrad Jałowiecki
  • Jerzy DajkaEmail author
Open Access
Regular Article
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics


We analyse dynamics of genuinely multi-partite entanglement of N-qubit states initially prepared in the form of so called X-matrices with one qubit coupled to a Davies-type environment. We develop an analytic formula for genuinely multi-partite concurrence of the investigated states as a function of time and analyze its time evolution with an emphasis on the qualitative difference between systems affected by a pure decoherence only and those which do dissipate energy at finite temperature.


  1. 1.
    M. Schlosshauer, Decoherence and the quantum-to-classical transition (Springer, Berlin, Heidelberg, 2007) Google Scholar
  2. 2.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009) ADSCrossRefGoogle Scholar
  3. 3.
    A. Furusawa, P. van Loock, Quantum teleportation and entanglement (Wiley, Weinheim, 2011) Google Scholar
  4. 4.
    L. Aolita, F. de Melo, L. Davidovich, Rep. Prog. Phys. 78, 042001 (2015) ADSCrossRefGoogle Scholar
  5. 5.
    M. Michael Walter, D. Gross, J. Eisert, Multi-partite entanglement, (2017)
  6. 6.
    A. Acín, D. Bruß, M. Lewenstein, A. Sanpera, Phys. Rev. Lett. 87, 040401 (2001) ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009) ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Hofmann, T. Moroder, O. Gühne, J. Phys. A: Math. Theor. 47, 155301 (2014) Google Scholar
  9. 9.
    S.M. Hashemi Rafsanjani, M. Huber, C.J. Broadbent, J.H. Eberly, Phys. Rev. A 86, 062303 (2012) ADSCrossRefGoogle Scholar
  10. 10.
    E.B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976) Google Scholar
  11. 11.
    H. Spohn, J.L. Lebowitz, in Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs (John Wiley & Sons, Inc., 2007), p. 109 Google Scholar
  12. 12.
    D. Kłoda, J. Dajka, Quant. Inf. Process. 14, 135 (2015) ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    K. Lendi, A.J. van Wonderen, J. Phys. A: Math. Theor. 40, 279 (2007) ADSCrossRefGoogle Scholar
  14. 14.
    J. Dajka, M. Mierzejewski, J. Łuczka, R. Blattmann, P. Hänggi, J. Phys. A: Math. Theor. 45, 485306 (2012) CrossRefGoogle Scholar
  15. 15.
    J. Dajka, J. Łuczka, Phys. Rev. A 87, 022301 (2013) ADSCrossRefGoogle Scholar
  16. 16.
    J. Dajka, J. Łuczka, Quant. Inf. Process. 15, 2661 (2016) ADSCrossRefGoogle Scholar
  17. 17.
    M. Łobejko, J. Łuczka, J. Dajka, Phys. Rev. A 91, 042113 (2015) ADSCrossRefGoogle Scholar
  18. 18.
    J. Dajka, J. Łuczka, P. Hänggi, Quant. Inf. Process. 10, 85 (2011) CrossRefGoogle Scholar
  19. 19.
    M Szela̧g, J. Dajka, E. Zipper, J. Łuczka, Acta Phys. Pol. B 39, 1177 (2008) ADSGoogle Scholar
  20. 20.
    J. Dajka, D. Kłoda, M. Łobejko, J. Sładkowski, PLoS One 10, 1 (2015) CrossRefGoogle Scholar
  21. 21.
    W. Roga, M. Fannes, K. Zyczkowski, Rep. Math. Phys. 66, 311 (2010) ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    R. Alicki, K. Lendi, Quantum Dynamical Semigroups and Applications, Lecture Notes in Physics (Springer, Berlin, Heidelberg, 2007) Google Scholar

Copyright information

© The Author(s) 2019

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.Institute of Physics, University of Silesia in KatowiceKatowicePoland
  2. 2.Silesian Center for Education and Interdisciplinary Research, University of Silesia in KatowiceChorzówPoland

Personalised recommendations