Active colloidal particles in emulsion droplets: a model system for the cytoplasm


In living cells, molecular motors create activity that enhances the diffusion of particles throughout the cytoplasm, and not just ones attached to the motors. We demonstrate initial steps toward creating artificial cells that mimic this phenomenon. Our system consists of active, Pt-coated Janus particles and passive tracers confined to emulsion droplets. We track the motion of both the active particles and passive tracers in a hydrogen peroxide solution, which serves as the fuel to drive the motion. We first show that correcting for bulk translational and rotational motion of the droplets induced by bubble formation is necessary to accurately track the particles. After drift correction, we find that the active particles show enhanced diffusion in the interior of the droplets and are not captured by the droplet interface. At the particle and hydrogen peroxide concentrations we use, we observe little coupling between the active and passive particles. We discuss the possible reasons for lack of coupling and describe ways to improve the system to more effectively mimic cytoplasmic activity.

This is a preview of subscription content, log in to check access.


  1. 1.

    M. Guo, A.J. Ehrlicher, M.H. Jensen, M. Renz, J.R. Moore, R.D. Goldman, J. Lippincott-Schwartz, F.C. Mackintosh, D.A. Weitz, Cell 158, 822 (2014)

    Article  Google Scholar 

  2. 2.

    J.C. Crocker, B.D. Hoffman, Cell Mechanics, in Methods in Cell Biology, edited by Y.L. Wang, D. Discher (Elsevier Academic Press, San Diego, 2007), Vol. 83, p. 141

  3. 3.

    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)

    ADS  Article  Google Scholar 

  4. 4.

    S. Wang, N. Wu, Langmuir 30, 3477 (2014)

    Article  Google Scholar 

  5. 5.

    A. Brown, W. Poon, Soft Matter 10, 4016 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    C. Holtze, A.C. Rowat, J.J. Agresti, J.B. Hutchison, F.E. Angilè, C.H.J. Schmitz, S. Köster, H. Duan, K.J. Humphry, R.A. Scanga et al., Lab Chip 8, 1632 (2008)

    Article  Google Scholar 

  7. 7.

    J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid et al., Nat. Methods 9, 676 (2012)

    Article  Google Scholar 

  8. 8.

    D. Allan, T.A. Caswell, N. Keim, F. Boulogne, R.W. Perry, L. Uieda, Zenodo, DOI: (2015)

  9. 9.

    P.J. Besl, N.D. McKay, IEEE Trans. Pattern Anal. Mach. Intell. 14, 239 (1992)

    Article  Google Scholar 

  10. 10.

    X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, H. Löwen, Phys. Rev. E 88, 032304 (2013)

    ADS  Article  Google Scholar 

  11. 11.

    J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010)

    ADS  Article  Google Scholar 

  12. 12.

    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016)

    ADS  Article  Google Scholar 

  13. 13.

    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009)

    ADS  Article  Google Scholar 

  14. 14.

    W. Wang, T.-Y. Chiang, D. Velegol, T.E. Mallouk, J. Am. Chem. Soc. 135, 10557 (2013)

    Article  Google Scholar 

  15. 15.

    M.J. Kim, K.S. Breuer, Phys. Fluids 16, L78 (2004)

    ADS  Article  Google Scholar 

  16. 16.

    L.G. Wilson, V.A. Martinez, J. Schwarz-Linek, J. Tailleur, G. Bryant, P.N. Pusey, W.C.K. Poon, Phys. Rev. Lett. 106, 018101 (2011)

    ADS  Article  Google Scholar 

  17. 17.

    D.T.N. Chen, A.W.C. Lau, L.A. Hough, M.F. Islam, M. Goulian, T.C. Lubensky, A.G. Yodh, Phys. Rev. Lett. 99, 148302 (2007)

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Vinothan N. Manoharan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Horowitz, V.R., Chambers, Z.C., Gözen, İ. et al. Active colloidal particles in emulsion droplets: a model system for the cytoplasm. Eur. Phys. J. Spec. Top. 227, 2413–2424 (2019).

Download citation