Advertisement

The European Physical Journal Special Topics

, Volume 227, Issue 17, pp 2413–2424 | Cite as

Active colloidal particles in emulsion droplets: a model system for the cytoplasm

  • Viva R. Horowitz
  • Zachary C. Chambers
  • İrep Gözen
  • Thomas G. Dimiduk
  • Vinothan N. ManoharanEmail author
Regular Article
  • 27 Downloads
Part of the following topical collections:
  1. Physics Inspired by Living Matter: Dynamics, Topology and Functionality

Abstract

In living cells, molecular motors create activity that enhances the diffusion of particles throughout the cytoplasm, and not just ones attached to the motors. We demonstrate initial steps toward creating artificial cells that mimic this phenomenon. Our system consists of active, Pt-coated Janus particles and passive tracers confined to emulsion droplets. We track the motion of both the active particles and passive tracers in a hydrogen peroxide solution, which serves as the fuel to drive the motion. We first show that correcting for bulk translational and rotational motion of the droplets induced by bubble formation is necessary to accurately track the particles. After drift correction, we find that the active particles show enhanced diffusion in the interior of the droplets and are not captured by the droplet interface. At the particle and hydrogen peroxide concentrations we use, we observe little coupling between the active and passive particles. We discuss the possible reasons for lack of coupling and describe ways to improve the system to more effectively mimic cytoplasmic activity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Guo, A.J. Ehrlicher, M.H. Jensen, M. Renz, J.R. Moore, R.D. Goldman, J. Lippincott-Schwartz, F.C. Mackintosh, D.A. Weitz, Cell 158, 822 (2014) CrossRefGoogle Scholar
  2. 2.
    J.C. Crocker, B.D. Hoffman, Cell Mechanics, in Methods in Cell Biology, edited by Y.L. Wang, D. Discher (Elsevier Academic Press, San Diego, 2007), Vol. 83, p. 141 Google Scholar
  3. 3.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    S. Wang, N. Wu, Langmuir 30, 3477 (2014) CrossRefGoogle Scholar
  5. 5.
    A. Brown, W. Poon, Soft Matter 10, 4016 (2014) ADSCrossRefGoogle Scholar
  6. 6.
    C. Holtze, A.C. Rowat, J.J. Agresti, J.B. Hutchison, F.E. Angilè, C.H.J. Schmitz, S. Köster, H. Duan, K.J. Humphry, R.A. Scanga et al., Lab Chip 8, 1632 (2008) CrossRefGoogle Scholar
  7. 7.
    J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid et al., Nat. Methods 9, 676 (2012) CrossRefGoogle Scholar
  8. 8.
    D. Allan, T.A. Caswell, N. Keim, F. Boulogne, R.W. Perry, L. Uieda, Zenodo, DOI:  https://doi.org/10.5281/zenodo.34028 (2015)
  9. 9.
    P.J. Besl, N.D. McKay, IEEE Trans. Pattern Anal. Mach. Intell. 14, 239 (1992) CrossRefGoogle Scholar
  10. 10.
    X. Zheng, B. ten Hagen, A. Kaiser, M. Wu, H. Cui, Z. Silber-Li, H. Löwen, Phys. Rev. E 88, 032304 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    J. Palacci, C. Cottin-Bizonne, C. Ybert, L. Bocquet, Phys. Rev. Lett. 105, 088304 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    C. Bechinger, R. Di Leonardo, H. Löwen, C. Reichhardt, G. Volpe, G. Volpe, Rev. Mod. Phys. 88, 045006 (2016) ADSCrossRefGoogle Scholar
  13. 13.
    E. Lauga, T.R. Powers, Rep. Prog. Phys. 72, 096601 (2009) ADSCrossRefGoogle Scholar
  14. 14.
    W. Wang, T.-Y. Chiang, D. Velegol, T.E. Mallouk, J. Am. Chem. Soc. 135, 10557 (2013) CrossRefGoogle Scholar
  15. 15.
    M.J. Kim, K.S. Breuer, Phys. Fluids 16, L78 (2004) ADSCrossRefGoogle Scholar
  16. 16.
    L.G. Wilson, V.A. Martinez, J. Schwarz-Linek, J. Tailleur, G. Bryant, P.N. Pusey, W.C.K. Poon, Phys. Rev. Lett. 106, 018101 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    D.T.N. Chen, A.W.C. Lau, L.A. Hough, M.F. Islam, M. Goulian, T.C. Lubensky, A.G. Yodh, Phys. Rev. Lett. 99, 148302 (2007) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsHarvard UniversityCambridgeUSA
  2. 2.Department of PhysicsHamilton CollegeClintonUSA
  3. 3.Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard UniversityCambridgeUSA
  4. 4.Faculty of Medicine, University of OsloOsloNorway
  5. 5.Faculty of Mathematics and Natural Sciences, University of OsloOsloNorway
  6. 6.Department of Chemistry and Chemical EngineeringChalmers University of TechnologyGöteborgSweden

Personalised recommendations