Coherent motion of dense active matter

Abstract

We discuss experiments, simulations and theories showing how active nematics behave in circular and linear confinement, and in the presence of friction. In each case active turbulence can be suppressed resulting in steady or periodic flows. These have the potential to act as power sources, transforming chemical energy to mechanical work, and we review first steps in this direction.

References

  1. 1.

    S. Ramaswamy, Annu. Rev. Cond. Mat. Phys. 1, 323 (2010)

    ADS  Article  Google Scholar 

  2. 2.

    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    ADS  Article  Google Scholar 

  3. 3.

    D. Needleman, Z. Dogic, Nat. Rev. Mat. 2, 17048 (2017)

    Article  Google Scholar 

  4. 4.

    J. Elgeti, R.G. Winkler, G. Gompper, Rep. Prog. Phys. 78, 056601 (2015)

    ADS  Article  Google Scholar 

  5. 5.

    V. Hakim, P. Silberzan, Rep. Prog. Phys. 80, 076601 (2017)

    ADS  Article  Google Scholar 

  6. 6.

    T. Sanchez, D.T.N. Chen, S.J. DeCamp, M. Heymann, Z. Dogic, Nature 491, 431 (2012)

    ADS  Article  Google Scholar 

  7. 7.

    J.L. Moran, J.D. Posner, Annu. Rev. Fluid Mech. 49, 511 (2017)

    ADS  Article  Google Scholar 

  8. 8.

    T.E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J.J. Fredberg, D.A. Weitz, PNAS 108, 4714 (2011)

    ADS  Article  Google Scholar 

  9. 9.

    A. Creppy, O. Praud, X. Druart, P.L. Kohnke, F. Plouraboué, Phys. Rev. E 92, 032722 (2015)

    ADS  Article  Google Scholar 

  10. 10.

    J. Urzay, A. Doostmohammadi, J.M. Yeomans, J. Fluid Mech. 822, 762 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    T.B. Saw, A. Doostmohammadi, V. Nier, L. Kocgozlu, S. Thampi, Y. Toyama, P. Marcq, C.T. Lim, J.M. Yeomans, B. Ladoux, Nature 544, 212 (2017)

    ADS  Article  Google Scholar 

  12. 12.

    K. Kawaguchi, R. Kageyama, M. Sano, Nature 545, 327 (2017)

    ADS  Article  Google Scholar 

  13. 13.

    Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys. Rev. Lett. 92, 118101 (2004)

    ADS  Article  Google Scholar 

  14. 14.

    S.P. Thampi, J.M. Yeomans, Eur. Phys. J. Special Topics 225, 651 (2016)

    ADS  Article  Google Scholar 

  15. 15.

    H. Wioland, F.G. Woodhouse, J. Dunkel, J.O. Kessler, R.E. Goldstein, Phys. Rev. Lett. 110, 268102 (2013)

    ADS  Article  Google Scholar 

  16. 16.

    E. Lushi, H. Wioland, R.E. Goldstein, PNAS 111, 9733 (2014)

    ADS  Article  Google Scholar 

  17. 17.

    H. Wioland, F.G. Woodhouse, J. Dunkel, R.E. Goldstein, Nat. Phys. 12, 341 (2016)

    Article  Google Scholar 

  18. 18.

    T. Gao, M.D. Betterton, A.S. Jhang, M.J. Shelley, Phys. Rev. Fluids 2, 093302 (2017)

    ADS  Article  Google Scholar 

  19. 19.

    K. Doxzen, S.K. Vedula, M.C. Leong, H. Hirata, N.S. Gov, A.J. Kabla, B. Ladoux, C.T. Lim, Integr. Biol. 5, 1026 (2013)

    Article  Google Scholar 

  20. 20.

    T.N. Shendruk, A. Doostmohammadi, K. Thijssen, J.M. Yeomans, Soft Matter 13, 3853 (2017)

    ADS  Article  Google Scholar 

  21. 21.

    F.G. Woodhouse, R.E. Goldstein, Phys. Rev. Lett. 109, 168105 (2012)

    ADS  Article  Google Scholar 

  22. 22.

    M. Ravnik, J.M. Yeomans, Phys. Rev. Lett. 110, 026001 (2013)

    ADS  Article  Google Scholar 

  23. 23.

    M. Neef, K. Kruse, Phys. Rev. E 90, 052703 (2014)

    ADS  Article  Google Scholar 

  24. 24.

    M.M. Norton, A. Baskaran, A. Opathalage, B. Langeslay, S. Fraden, A. Baskaran, M. Hagan, Phys. Rev. E 97, 012702 (2018)

    ADS  Article  Google Scholar 

  25. 25.

    P. Guillamat, J. Ignés-Mullol, F. Sagués, Nat. Commun. 8, 564 (2017)

    ADS  Article  Google Scholar 

  26. 26.

    M. Theillard, R. Alonso-Matilla, D. Saintillan, Soft Matter 13, 363 (2017)

    ADS  Article  Google Scholar 

  27. 27.

    M. Deforet, V. Hakim, H.G. Yevick, G. Duclos, P. Silberzan, Nat. Commun. 5, 3747 (2014)

    ADS  Article  Google Scholar 

  28. 28.

    J. Notbohm, S. Banerjee, K.J.C. Utuje, B. Gweon, H. Jang, Y. Park, J. Shin, J.P. Butler, J.J. Fredberg, M.C. Marchetti, Biophys. J. 110, 2729 (2016)

    ADS  Article  Google Scholar 

  29. 29.

    A. Doostmohammadi, S.P. Thampi, T.B. Saw, C.T. Lim, B. Ladoux, J.M. Yeomans, Soft Matter 11, 7328 (2015)

    ADS  Article  Google Scholar 

  30. 30.

    M.J. Siedlik, S. Manivannan, I.G. Kevrekidis, C.M. Nelson, Biophys. J. 112, 2419 (2017)

    ADS  Article  Google Scholar 

  31. 31.

    R. Voituriez, J.F. Joanny, J. Prost, Europhys. Lett. 70, 404 (2005)

    ADS  Article  Google Scholar 

  32. 32.

    D. Marenduzzo, E. Orlandini, M.E. Cates, J.M. Yeomans, Phys. Rev. E 76, 031921 (2007)

    ADS  Article  Google Scholar 

  33. 33.

    S. Edwards, J.M. Yeomans, Europhys. Lett. 85, 18008 (2009)

    ADS  Article  Google Scholar 

  34. 34.

    R.A. Simha, S. Ramaswamy, Phys. Rev. Lett. 89, 058101 (2002)

    ADS  Article  Google Scholar 

  35. 35.

    R. Green, J. Toner, V. Vitelli, Phys. Rev. Fluids 2, 104201 (2017)

    ADS  Article  Google Scholar 

  36. 36.

    A. Doostmohammadi, T.N. Shendruk, K. Thijssen, J.M. Yeomans, Nat. Commun. 8, 15326 (2017)

    ADS  Article  Google Scholar 

  37. 37.

    R. Ramaswamy, F. Jülicher, Sci. Rep. 6, 20838 (2016)

    ADS  Article  Google Scholar 

  38. 38.

    M. Sano, K. Tamai, Nat. Phys. 12, 249 (2016)

    Article  Google Scholar 

  39. 39.

    G. Lemoult, L. Shi, K. Avila, S.V. Jalikop, M. Avila, B. Hof, Nat. Phys. 12, 254 (2016)

    Article  Google Scholar 

  40. 40.

    E.J. Hemingway, P. Mishra, M.C. Marchetti, S.M. Fielding, Soft Matter 12, 7943 (2016)

    ADS  Article  Google Scholar 

  41. 41.

    H. Wioland, E. Lushi, R.E. Goldstein, New J. Phys. 18, 075002 (2016)

    ADS  Article  Google Scholar 

  42. 42.

    S.K. Vedula, M.C. Leong, T.L. Lai, P. Hersen, A.J. Kabla, C.T. Lim, B. Ladoux, PNAS 109, 12974 (2012)

    ADS  Article  Google Scholar 

  43. 43.

    A.K. Marel, M. Zorn, C. Klingner, R. Wedlich-Söldner, E. Frey, J.O. Rädler, Biophys. J. 107, 1054 (2014)

    ADS  Article  Google Scholar 

  44. 44.

    A.K. Marel, N. Podewitz, M. Zorn, J.O. Rädler, J. Elgeti, New J. Phys. 16, 115005 (2014)

    ADS  Article  Google Scholar 

  45. 45.

    V. Nier, M. Deforet, G. Duclos, H.G. Yevick, O. Cochet-Escartin, P. Marcq, P. Silberzan, PNAS 112, 9546 (2015)

    ADS  Article  Google Scholar 

  46. 46.

    V. Tarle, E. Gauquelin, S.R.K. Vedula, J. D’Alessandro, C.T. Lim, B. Ladoux, N.S. Gov, Phys. Biol. 14, 035001 (2017)

    ADS  Article  Google Scholar 

  47. 47.

    F.G. Woodhouse, R.E. Goldstein, PNAS 110, 14132 (2013)

    ADS  Article  Google Scholar 

  48. 48.

    A. Doostmohammadi, M.F. Adamer, S.P. Thampi, J.M. Yeomans, Nat. Commun. 7, 10557 (2016)

    ADS  Article  Google Scholar 

  49. 49.

    N.S. Rossen, J.M. Tarp, J. Mathiesen, M.H. Jensen, L.B. Oddershede, Nat. Commun. 5, 5720 (2014)

    ADS  Article  Google Scholar 

  50. 50.

    S.P. Thampi, R. Golestanian, J.M. Yeomans, Phys. Rev. E 90, 062307 (2014)

    ADS  Article  Google Scholar 

  51. 51.

    P. Guillamat, J. Ignés-Mullol, F. Sagués, Phys. Rev. E 94, 060602 (2016)

    ADS  Article  Google Scholar 

  52. 52.

    I.H. Riedel, K. Kruse, J. Howard, Science 309, 300 (2005)

    ADS  Article  Google Scholar 

  53. 53.

    P. Guillamat, J. Ignés-Mullol, F. Sagués, PNAS 113, 5498 (2016)

    ADS  Article  Google Scholar 

  54. 54.

    P. Guillamat, J. Ignés-Mullol, F. Sagués, Mol. Crys. Liq. Cryst. 646, 226 (2017)

    Article  Google Scholar 

  55. 55.

    P. Galajda, J. Keymer, P. Chaikin, R. Austin, J. Bacteriol. 189, 8704 (2007)

    Article  Google Scholar 

  56. 56.

    C.J. Olson Reichhardt, C. Reichhardt, Annu. Rev. Condens. Matter Phys 8, 51 (2017)

    ADS  Article  Google Scholar 

  57. 57.

    G. Mahmud, C.J. Campbell, K.J.M. Bishop, Y.A. Komarova, O. Chaga, S. Soh, S. Huda, K. Kandere-Grzybowska, B.A. Grzybowski, Nat. Phys. 5, 606 (2009)

    Article  Google Scholar 

  58. 58.

    A. Kaiser, A. Peshkov, A. Sokolov, B. ten Hagen, H. Lowen, I.S. Aranson, Phys. Rev. Lett. 112, 158101 (2014)

    ADS  Article  Google Scholar 

  59. 59.

    S. Zhou, A. Sokolov, O.D. Lavrentovich, I.S. Aranson, PNAS 111, 1265 (2014)

    ADS  Article  Google Scholar 

  60. 60.

    C. Peng, T. Turiv, Y. Guo, Q-H. Wei, O.D. Lavrentovich, Science 354, 882 (2016)

    ADS  Article  Google Scholar 

  61. 61.

    S.P. Thampi, A. Doostmohammadi, T.N. Shendruk, R. Golestanian, J.M. Yeomans, Sci. Adv. 2, e1501854 (2016)

    ADS  Article  Google Scholar 

  62. 62.

    K.T. Wu, J.B. Hishamunda, D.T.N. Chen, S.J. DeCamp, Y.W. Chang, A. Fernández-Nieves, S. Fraden, Z. Dogic, Science 355, 1979 (2017)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Julia M. Yeomans.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doostmohammadi, A., Yeomans, J.M. Coherent motion of dense active matter. Eur. Phys. J. Spec. Top. 227, 2401–2411 (2019). https://doi.org/10.1140/epjst/e2019-700109-x

Download citation