Skip to main content

Developing coarse-grained models for agglomerate growth

Abstract

In this paper we present a coarse-graining (CG) approach for the agglomeration of nano-particles and clusters. In the current context, coarse-graining involves the replacement of fractal-like clusters by "representative" spherical particles. This simplification reduces significantly the number of degrees of freedom and allows for the computation of much larger systems and for better collision statistics of larger clusters. However, detailed information on the cluster shape is lost, but it is exactly this detailed shape that determines collision frequencies between fractal clusters and thus the agglomerates' growth. Therefore, additional properties need to be "inherited" by the coarsegrained particle that ensure similar collision frequencies. We generate collision probabilities as functions of the minimum passing distance between the clusters and provide these as additional function to the CG particle. This allows for partial overlap between CG particles, and the collision/sticking event is triggered with a specific probability only. We compare collision frequencies of CG simulations with equivalent Langevin dynamics simulations where all primary particles are tracked, and we observe decent agreement between cluster growth predicted by CG and the detailed Langevin dynamics simulations. Remaining differences may stem from differences in cluster transport.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T.T. Kodas, M. Hampden-Smith, Aerosol processing of materials (New York, Wiley, 1999)

  2. 2.

    J. Gregory, Particles in water: properties and processes (CRC Press, 2005)

  3. 3.

    C.A. Grant, P.C. Twigg, R. Baker, D.J. Tobin, Beilstein J. Nanotechnol. 6, 1183 (2015)

    Article  Google Scholar 

  4. 4.

    I. Schreiver, B. Hesse, C. Seim, H. Castillo-Michel, J. Villanova, P. Laux, N. Dreiack, R. Penning, R. Tucoulou, M. Cotte, A. Luch, Sci. Rep. 7, 11395 (2017)

    ADS  Article  Google Scholar 

  5. 5.

    L. Isella, Y. Drossinos, Phys. Rev. E 82, 011404 (2010)

    ADS  Article  Google Scholar 

  6. 6.

    G.A. Adebayo, B.C. Anusionwu, A.N. Njah, O.J. Adeniran, B. Mathew, R.S. Sunmonu, Pramana 75, 523 (2010)

    ADS  Article  Google Scholar 

  7. 7.

    G. Inci, A. Kronenburg, R. Weeber, D. Pflüger, Flow Turbul. Combust. 98, 1 (2017)

    Article  Google Scholar 

  8. 8.

    S. Hirschmann, M. Brunn, M. Lahnert, M.W Glass, M. Mehl, D. Pflüger, Load balancing with p4est for short-range molecular dynamics with ESPResSo, in Advances in parallel computing (IOS Press, Amsterdam, 2017), Vol. 32, p. 455

  9. 9.

    S.K. Friedlander, Smoke, dust and haze, 2nd edn. (Oxford University Press, Oxford, New York, 2000)

  10. 10.

    S.E. Pratsinis, J. Colloid Interface Sci. 124, 416 (1988)

    ADS  Article  Google Scholar 

  11. 11.

    M. Levitt, A. Warshel, Nature 253, 694 (1975)

    ADS  Article  Google Scholar 

  12. 12.

    S. Izvekov, A. Violi, J. Chem. Theory Comput. 2, 504 (2006)

    Article  Google Scholar 

  13. 13.

    C.J. Meyer, D.A. Deglon, Miner. Eng. 24, 719 (2011)

    Article  Google Scholar 

  14. 14.

    A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Kosovan, C. HolmESPResSo 3.1: molecular dynamics software for coarse-grained models, in Meshfree methods for partial differential equations VI , , edited by M. Griebel, M.A. Schweitzer (Springer, Berlin, Heidelberg, 2013), Vol. 89, p. 12

  15. 15.

    H.J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006)

    ADS  Article  Google Scholar 

  16. 16.

    R.M. Kerr, J. Fluid Mech. 153, 31 (1985)

    ADS  Article  Google Scholar 

  17. 17.

    G. Inci, A. Arnold, A. Kronenburg, R. Weeber, Aerosol Sci. Technol. 48, 842 (2014)

    ADS  Article  Google Scholar 

  18. 18.

    D.C. Richardson, K.J. Walsh, N. Murdoch, P. Michel, Icarus 222, 427 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Milena Smiljanic or Andreas Kronenburg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Smiljanic, M., Weeber, R., Pflüger, D. et al. Developing coarse-grained models for agglomerate growth. Eur. Phys. J. Spec. Top. 227, 1515–1527 (2019). https://doi.org/10.1140/epjst/e2018-800177-y

Download citation