Skip to main content

Open quantum walks

A mini review of the field and recent developments

Abstract

Open quantum walks (OQWs) are a class of quantum walks, which are purely driven by the interaction with the dissipative environment. In this paper, we review theoretical advances on the foundations of discrete time OQWs, continuous time OQWs and a scaling limit of OQWs called open quantum Brownian motion. The main focus of the review is on the results and developments of discrete time OQW, covering general formalism, quantum trajectories for OQWs, central limit theorems, the microscopic derivation as well as possible generalisations and applications of OQWs.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    W. Feller, in An Introduction to Probability Theory and Its Applications (Wiley, New York 1968), Vol. 1

  2. 2.

    Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48, 1687 (1993)

    ADS  Article  Google Scholar 

  3. 3.

    J. Kempe, Contemp. Phys. 44, 307 (2003)

    ADS  Article  Google Scholar 

  4. 4.

    S.E. Venegas-Andraca, Quantum Inf. Process. 11, 1015 (2012)

    MathSciNet  Article  Google Scholar 

  5. 5.

    S. Attal, F. Petruccione, C. Sabot, I. Sinayskiy, J. Stat. Phys. 147, 832 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  6. 6.

    S. Attal, F. Petruccione, I. Sinayskiy, Phys. Lett. A 376, 1545 (2012)

    ADS  MathSciNet  Article  Google Scholar 

  7. 7.

    I. Sinayskiy, F. Petruccione, J. Phys.: Conf. Ser. 442, 012003 (2013)

    Google Scholar 

  8. 8.

    S. Attal, N. Guillotin-Plantard, C. Sabot, Ann. Henri Poincaré 16, 15 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  9. 9.

    N. Konno, H.J. Yoo, J. Stat. Phys. 150, 299 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  10. 10.

    P. Sadowski, L. Pawela, Quantum Inf. Process. 15, 2725 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    I. Sinayskiy, F. Petruccione, Phys. Scr. T151, 014077 (2012)

    ADS  Article  Google Scholar 

  12. 12.

    R. Carbone, Y. Pautrat, Ann. Henri Poincaré 17 99 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  13. 13.

    R. Carbone, Y. Pautrat, J. Stat. Phys. 160, 1125 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  14. 14.

    I. Bardet, D. Bernard, Y. Pautrat, J. Stat. Phys. 167, 173 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    C.F. Lardizabal, R.R. Souza, J. Stat. Phys. 159, 772 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  16. 16.

    S. Gudder, Found. Phys. 39, 573 (2009)

    ADS  MathSciNet  Article  Google Scholar 

  17. 17.

    S. Gudder, J. Math. Phys. 49, 072105 (2008)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    C.F. Lardizabal, R.R. Souza, J. Stat. Phys. 164, 1122 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  19. 19.

    C.F. Lardizabal, Quantum Inf. Comput. 17, 79 (2017)

    MathSciNet  Google Scholar 

  20. 20.

    S.L. Carvalho, L.F. Guidi, C.F. Lardizabal, Quantum Inf. Process. 16, 17 (2017)

    ADS  Article  Google Scholar 

  21. 21.

    T.S. Jacq, C.F. Lardizabal, J. Stat. Phys. 169, 547 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  22. 22.

    A. Dhahri, F. Mukhamedov, https://doi.org/arXiv:1608.01065 (2016)

  23. 23.

    L. Accardi, Funct. Anal. Its Appl. 9, 1 (1975)

    Article  Google Scholar 

  24. 24.

    F.A. Grünbaum, L. Velázquez, Adv. Math. 326, 352 (2018)

    MathSciNet  Article  Google Scholar 

  25. 25.

    S. Xiong, W.S. Yang, J. Stat. Phys. 152, 473 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  26. 26.

    L. Pawela, P. Gawron, J.A. Miszczak, P. Sadowski, PLoS One 10, 0130967 (2015)

    Article  Google Scholar 

  27. 27.

    C. Wang, C. Wang, S. Ren, Y. Tang, Quantum Inf. Process. 17, 46 (2018)

    ADS  Article  Google Scholar 

  28. 28.

    C. Ampadu, Commun. Theor. Phys. 59, 563 (2013)

    MathSciNet  Article  Google Scholar 

  29. 29.

    C. Ampadu, Chin. Phys. B 23, 030302 (2014)

    Article  Google Scholar 

  30. 30.

    C. Ampadu, SciFed J. Quantum Phys. 1, 1000006 (2017)

    Google Scholar 

  31. 31.

    C. Liu, https://doi.org/arXiv:1502.01680 (2015)

  32. 32.

    C.F. Lardizabal, https://doi.org/arXiv:1801.09578 (2018)

  33. 33.

    I. Sinayskiy, F. Petruccione, Quantum Inf. Process. 11, 1301 (2012)

    MathSciNet  Article  Google Scholar 

  34. 34.

    B. Kraus, H.P. Büchler, S. Diehl, A. Kantian, A. Micheli, P. Zoller, Phys. Rev. A 78, 042307 (2008)

    ADS  Article  Google Scholar 

  35. 35.

    M.J. Kastoryano, F. Reiter, A.S. Sorensen, Phys. Rev. Lett. 106, 090502 (2011)

    ADS  Article  Google Scholar 

  36. 36.

    I. Sinaysky, F. Petruccione, D. Burgarth, Phys. Rev. A 78, 062301 (2008)

    ADS  Article  Google Scholar 

  37. 37.

    R. Sweke, I. Sinayskiy, F. Petruccione, J. Phys. B 46, 104004 (2013)

    ADS  Article  Google Scholar 

  38. 38.

    R. Sweke, I. Sinayskiy, F. Petruccione, Phys. Rev. A 87, 042323 (2013)

    ADS  Article  Google Scholar 

  39. 39.

    F. Verstraete, M.M. Wolf, J.I. Cirac, Nat. Phys. 5, 633 (2009)

    Article  Google Scholar 

  40. 40.

    I. Sinayskiy, F. Petruccione, Int. J. Quantum Inform. 12, 14610101 (2014)

    Article  Google Scholar 

  41. 41.

    I. Sinayskiy, F. Petruccione, Open Syst. Inf. Dyn. 20, 1340007 (2013)

    Article  Google Scholar 

  42. 42.

    I. Sinayskiy, F. Petruccione, Phys. Rev. A 92, 032105 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  43. 43.

    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)

  44. 44.

    E.B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976)

  45. 45.

    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976)

    ADS  Article  Google Scholar 

  46. 46.

    G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    ADS  Article  Google Scholar 

  47. 47.

    C. Pellegrini, J. Stat. Phys. 154, 838 (2014)

    ADS  MathSciNet  Article  Google Scholar 

  48. 48.

    H.P. Breuer, Phys. Rev. A 75, 022103 (2007)

    ADS  MathSciNet  Article  Google Scholar 

  49. 49.

    S. Attal, Y. Pautrat, Ann. Henri Poincaré 7, 59 (2006)

    ADS  MathSciNet  Article  Google Scholar 

  50. 50.

    H. Bringuier, Ann. Henri Poincaré 18, 3167 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  51. 51.

    C. Liu, R. Balu, Quantum Inf. Process. 16, 173 (2017)

    ADS  Article  Google Scholar 

  52. 52.

    I. Bardet, H. Bringuier, Y. Pautrat, C. Pellegrini, https://doi.org/arXiv:1803.03436 (2018)

  53. 53.

    M. Bauer, D. Bernard, A. Tilloy, Phys. Rev. A 88, 062340 (2013)

    ADS  Article  Google Scholar 

  54. 54.

    M. Bauer, D. Bernard, A. Tilloy, J. Stat. Mech. 2014, P09001 (2014)

    Article  Google Scholar 

  55. 55.

    I. Sinayskiy, F. Petruccione, Phys. Scr. T165, 014017 (2015)

    ADS  Article  Google Scholar 

  56. 56.

    I. Sinayskiy, F. Petruccione, Fortschr. Phys. 65, 1600063 (2017)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ilya Sinayskiy.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinayskiy, I., Petruccione, F. Open quantum walks. Eur. Phys. J. Spec. Top. 227, 1869–1883 (2019). https://doi.org/10.1140/epjst/e2018-800119-5

Download citation