Advertisement

Exact master equation and general non-Markovian dynamics in open quantum systems

  • Wei-Min ZhangEmail author
Review
Part of the following topical collections:
  1. Non-equilibrium Dynamics: Quantum Systems and Foundations of Quantum Mechanics

Abstract

Investigations of quantum and mesoscopic thermodynamics force one to answer two fundamental questions associated with the foundations of statistical mechanics: (i) how does macroscopic irreversibility emerge from microscopic reversibility? (ii) how does the system relax in general to thermal equilibrium with its environment? The answers to these questions rely on a deep understanding of nonequilibrium decoherence dynamics of systems interacting with their environments. Decoherence is also a main concern in developing quantum information technology. In the past two decades, many theoretical and experimental investigations have devoted to this topic, most of these investigations take the Markov (memory-less) approximation. These investigations have provided a partial understanding to several fundamental issues, such as quantum measurement and the quantum-to-classical transition, etc. However, experimental implementations of nanoscale solid-state quantum information processing makes strong non-Markovian memory effects unavoidable, thus rendering their study a pressing and vital issue. Through the rigorous derivation of the exact master equation and a systematical exploration of various non-Markovian processes for a large class of open quantum systems, we find that decoherence manifests unexpected complexities. We demonstrate these general non-Markovian dynamics manifested in different open quantum systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Huang, in Statistical Mechanics, 2nd edn. (John Wiley & Sons, New York, 1987) pp. 189–191 Google Scholar
  2. 2.
    W. Pauli, in Festschrift zum 60. Geburtstage A. Sommerfelds (Hirzel, Leipzig, 1928), p. 30 Google Scholar
  3. 3.
    L. van Hove, Physica 21, 517 (1954) ADSCrossRefGoogle Scholar
  4. 4.
    S. Nakajima, Prog. Theor. Phys. 20, 948 (1958) ADSCrossRefGoogle Scholar
  5. 5.
    R. Zwanzig, J. Chem. Phys. 33, 1338 (1960) Google Scholar
  6. 6.
    F. Haake, Z. Phys. 223, 353 (1969) ADSCrossRefGoogle Scholar
  7. 7.
    V. Gorini, A. Kossakowski, E.C.G. Sudarshan, J. Math. Phys. 17, 821 (1976) Google Scholar
  8. 8.
    G. Lindblad, Commun. Math. Phys. 48, 119 (1976) ADSCrossRefGoogle Scholar
  9. 9.
    A.O. Caldeira, A.J. Leggett, Physica 121A, 587 (1983) Google Scholar
  10. 10.
    R.P. Feynman, F.L. Vernon, Ann. Phys. (N.Y.) 24, 118 (1963) ADSCrossRefGoogle Scholar
  11. 11.
    U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008) Google Scholar
  12. 12.
    W.M. Zhang, P.Y. Lo, H.N. Xiong, M.W.Y. Tu, F. Nori, Phys. Rev. Lett. 109, 170402 (2012) ADSCrossRefGoogle Scholar
  13. 13.
    M.W.W.Tu, W.M. Zhang, Phys. Rev. B 78, 235311 (2008) ADSCrossRefGoogle Scholar
  14. 14.
    J. Jin, M.W.U. Tu, W.M. Zhang, Y.J. Yan, New J. Phys. 12, 083013 (2010) ADSCrossRefGoogle Scholar
  15. 15.
    C.U. Lei, W.M. Zhang, Ann. Phys. 327, 1408 (2012) ADSCrossRefGoogle Scholar
  16. 16.
    P.Y. Yang, C.Y. Lin, W.M. Zhang, Phys. Rev. B 92, 165403 (2015) ADSCrossRefGoogle Scholar
  17. 17.
    H.L. Lai, P.Y. Yang, Y.W. Huang, W.M. Zhang, Phys. Rev. B 97, 054508 (2018) ADSCrossRefGoogle Scholar
  18. 18.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958) ADSCrossRefGoogle Scholar
  19. 19.
    P.W. Anderson, Phys. Rev. 124, 41 (1961) ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    U. Fano, Phys. Rev. 124, 1866 (1961) ADSCrossRefGoogle Scholar
  21. 21.
    C. Cohen-Tannoudji, J. Dupont, G. Grynberg, Atom-Photon Interactions (Wiley, New York, 1992) Google Scholar
  22. 22.
    P. Lambropoulos, G.M. Nikolopoulos, T.R. Nielsen, S. Bay, Rep. Prog. Phys. 63, 455 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    G.D. Mahan, in Many-Body Physics, 3rd edn. (Kluwer Academic/ Publishers, New York, 2000), pp. 207–208 Google Scholar
  24. 24.
    J. Schwinger, J. Math. Phys. 2, 407 (1961) Google Scholar
  25. 25.
    L.V. Keldysh, Sov. Phys. JETP 20, 1018 (1965) Google Scholar
  26. 26.
    L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962) Google Scholar
  27. 27.
    H.N. Xiong, W.M. Zhang, X. Wang, M.H. Wu, Phys. Rev. A 82, 012105 (2010) ADSCrossRefGoogle Scholar
  28. 28.
    P.Y. Lo, H.N. Xiong, W.M. Zhang, Sci. Rep. 5, 9423 (2015) CrossRefGoogle Scholar
  29. 29.
    H.N. Xiong, P.Y. Lo, W.M. Zhang, D.H. Feng, F. Nori, Sci. Rep. 5, 13353 (2015) ADSCrossRefGoogle Scholar
  30. 30.
    M.M. Ali, P.Y. Lo, M.W.Y. Tu, W.M. Zhang, Phys. Rev. A 92, 062306 (2015) ADSCrossRefGoogle Scholar
  31. 31.
    C.U. Lei, W.M. Zhang, Phys. Rev. A 84, 052116 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    M.M. Ali, W.M. Zhang, Phys. Rev. A 95, 033830 (2017) ADSCrossRefGoogle Scholar
  33. 33.
    I. de Vega, D. Alonso, Rev. Mod. Phys. 89, 015001 (2017) ADSCrossRefGoogle Scholar
  34. 34.
    M.M. Wolf, J. Eisert, T.S. Cubitt, J.I. Cirac, Phys. Rev. Lett. 101, 150402 (2008) ADSMathSciNetCrossRefGoogle Scholar
  35. 35.
    Á. Rivas, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105, 050403 (2010) ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    H.P. Breuer, E.M. Laine, J. Piilo, Phys. Rev. Lett. 103, 210401 (2009) ADSMathSciNetCrossRefGoogle Scholar
  37. 37.
    R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965) Google Scholar
  38. 38.
    H. Haug, A.-P. Jauho, in Quantum Kinetics in Transport and Optics of Semiconductors, 2nd edn., Springer Series in Solid-State Sciences (Springer, Berlin, 2007), Vol. 123 Google Scholar
  39. 39.
    Y. Imry, Introduction to Mesoscopic Physics, 2nd edn. (Oxford University Press, Oxford, 2002) Google Scholar
  40. 40.
    K.O. Friedrichs, Commun. Pure Appl. Math. 1, 361 (1948) Google Scholar
  41. 41.
    T.D. Lee, Phys. Rev. 95, 1329 (1954) ADSCrossRefGoogle Scholar
  42. 42.
    I. Prigogine, Phys. Rep. 219, 93 (1992) ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    P.L. Knight, M.A. Lauder, B.J. Dalton, Phys. Rep. 190, 1 (1990) ADSCrossRefGoogle Scholar
  44. 44.
    H.J. Carmichael, in An Open Systems Approach to Quantum Optics, Lecture Notes in Physics (Springer-Verlag, Berlin, 1993), Vol. m18 Google Scholar
  45. 45.
    W.M. Zhang, L. Wilets, Phys. Rev. C 45, 1900 1992 Google Scholar
  46. 46.
    M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Addison-Wesley, Reading, 1995) Google Scholar
  47. 47.
    F. Haake, R. Reibold, Phys. Rev. A 32, 2462 (1985) ADSCrossRefGoogle Scholar
  48. 48.
    B.L. Hu, J.P. Paz, Y.H. Zhang, Phys. Rev. D 45, 2843 (1992) ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988) ADSMathSciNetCrossRefGoogle Scholar
  50. 50.
    R. Karrlein, H. Grabert, Phys. Rev. E 55, 153 (1997) ADSCrossRefGoogle Scholar
  51. 51.
    Leggett1987 A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987) Google Scholar
  52. 52.
    E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963) CrossRefGoogle Scholar
  53. 53.
    C. Anastopoulos, B.L. Hu, Phys. Rev. A 62, 033821 (2000) ADSCrossRefGoogle Scholar
  54. 54.
    H.Z. Shen, M. Qin, X.-M. Xiu, X.X. Yi, Phys. Rev. A 89, 062113 (2014) ADSCrossRefGoogle Scholar
  55. 55.
    S.J. Whalen, H.J. Carmichael, Phys. Rev. A 93, 063820 (2016) ADSCrossRefGoogle Scholar
  56. 56.
    L.D. Faddeev, A.A. Slavnov, Gauge Fields: Introduction to Quantum Theory (Benjamin-Cummings, Reading, MA, 1980) Google Scholar
  57. 57.
    R. Gilmore, Lie Groups, Lie Algebras and Some of Their Applications (John Wiley & Sons, New York, 1974) Google Scholar
  58. 58.
    W.M. Zhang, D.H. Feng, R. Gilmore, Rev. Mod. Phys. 62, 867 (1990) ADSCrossRefGoogle Scholar
  59. 59.
    B.M. Garraway, Phys. Rev. A 55, 2290 (1997) ADSCrossRefGoogle Scholar
  60. 60.
    H.-P. Breuer, B. Kappler, F. Petruccione, Phys. Rev. A 59, 1633 (1999) ADSCrossRefGoogle Scholar
  61. 61.
    R. Doll, D. Zueco, M. Wubs, S. Kohler, P. Hänggi, Chem. Phys. 347, 243 (2008) CrossRefGoogle Scholar
  62. 62.
    H.-S. Goan, C.-C. Jian, P.-W. Chen, Phys. Rev. A 82, 012111 (2010) ADSCrossRefGoogle Scholar
  63. 63.
    M.J. Schmidt, D. Rainis, D. Loss, Phys. Rev. B 86, 085414 (2012) ADSCrossRefGoogle Scholar
  64. 64.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum System (Oxford University Press, Oxford, 2002) Google Scholar
  65. 65.
    J. Jin, X. Zheng, Y.J. Yan, J. Chem. Phys. 128, 234703 (2008) Google Scholar
  66. 66.
    M. Thorwart, M. Grifoni, P. Hänggi, Ann. Phys. 293, 15 (2001) ADSCrossRefGoogle Scholar
  67. 67.
    H.T. Tan, W.M. Zhang, Phys. Rev. A 83, 032102 (2011) ADSCrossRefGoogle Scholar
  68. 68.
    P.Y. Yang, W.M. Zhang, https://doi.org/arXiv:1605.08521 (2016)
  69. 69.
    P. Nalbach, M. Thorwart, Phys. Rev. B 81, 054308 (2010) ADSCrossRefGoogle Scholar
  70. 70.
    P.Y. Yang, C.Y. Lin, W.M. Zhang, Phys. Rev. B 89, 115411 (2014) ADSCrossRefGoogle Scholar
  71. 71.
    K. Thibault, J. Gabelli, C. Lupien, B. Reulet, Phys. Rev. Lett. 114, 236604 (2015) ADSCrossRefGoogle Scholar
  72. 72.
    R.H. Brown, R.Q. Twiss, Nature 177, 27 (1956) ADSCrossRefGoogle Scholar
  73. 73.
    H.J. Kimble, M. Dagenais, L. Mandel, Phys. Rev. Lett. 39, 691 (1977) ADSCrossRefGoogle Scholar
  74. 74.
    A. Malik, A.R. Sandy, L.B. Lurio, G.B. Stephenson, S.G.J. Mochrie, I. McNulty, M. Sutton, Phys. Rev. Lett. 81, 5832 (1998) ADSCrossRefGoogle Scholar
  75. 75.
    F. Livet, F. Bley, R. Caudron, E. Geissler, D. Abernathy, C. Detlefs, G. Grubel, M. Sutton, Phys. Rev. E 63, 036108 (2001) ADSCrossRefGoogle Scholar
  76. 76.
    M. Sutton, K. Laaziri, F. Livet, F. Bley, Opt. Express 11, 2268 (2003) ADSCrossRefGoogle Scholar
  77. 77.
    Y.C. Lin, P.Y. Yang, W.M. Zhang, Sci. Rep. 6, 34804 (2016) ADSCrossRefGoogle Scholar
  78. 78.
    M.M. Ali, W.M. Zhang, https://doi.org/arXiv:1803.04658 (2018)
  79. 79.
    M.W.Y. Tu, W.M. Zhang, J.S. Jin, O. Entin-Wohlman, A. Aharony, Phys. Rev. B 86, 115453 (2012) ADSCrossRefGoogle Scholar
  80. 80.
    M.W.Y. Tu, A. Aharony, W.M. Zhang, O. Entin-Wohlman, Phys. Rev. B 90, 165422 (2014) ADSCrossRefGoogle Scholar
  81. 81.
    J.H. Liu, M.W.Y. Tu, W.M. Zhang, Phys. Rev. B 94, 045403 (2016) ADSCrossRefGoogle Scholar
  82. 82.
    P.Y. Yang, W.M. Zhang, Front. Phys. 12, 127204 (2017) CrossRefGoogle Scholar
  83. 83.
    P.Y. Yang, W.M. Zhang, Phys. Rev. B 97, 045301 (2018) ADSCrossRefGoogle Scholar
  84. 84.
    J.C. Yao, W.M. Zhang, in progress. Google Scholar

Copyright information

© EDP Sciences, Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Center for Quantum Information ScienceNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations