Proposal for direct measuring of the Majorana number in a topological superconductor using a quantum dot
- 51 Downloads
Abstract
We propose to directly measure the Majorana number for one-dimensional topological superconductors using a quantum dot. The setup consists of two topological superconducting wires with four Majorana zero modes, which are coupled to an external quantum dot. The measurement is achieved by utilizing the definition of the Majorana number, which is the charge-parity flipping when changing the boundary condition for the topological superconductor. We consider a control of the boundary condition with voltage gates. When the voltage on the gate are modulated sequentially, the boundary conditions changes and the parity of the superconducting state flips. We demonstrate that this parity flipping will change the electron occupation probability of the quantum dot, which reflects the value of the Majorana number.
Preview
Unable to display preview. Download preview PDF.
References
- 1.J. Alicea, Rep. Prog. Phys. 75, 076501 (2012) ADSCrossRefGoogle Scholar
- 2.T.D. Stanescu, S. Tewari, J. Phys.: Condens. Matter 25, 233201 (2013) Google Scholar
- 3.C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008) ADSCrossRefGoogle Scholar
- 4.X.L. Qi S.C. Zhang, Rev. Mod. Phys. 83, 1057 (2011) ADSCrossRefGoogle Scholar
- 5.C.W.J. Beenakker, Annu. Rev. Conmat. Phys 4, 113 (2013) CrossRefGoogle Scholar
- 6.S. Masatoshi, F. Satoshi, Phys. Rev. B. 79, 094504 (2009) CrossRefGoogle Scholar
- 7.Q.L. He, L. Pan, A.L. Stern, E.C. Burks, X.Y. Che, G. Yin, J. Wang, B. Lian, Q. Zhou, E.S. Choi, K.C. Murata, X.F. Kou, Z.J. Chen, T.X. Nie, Q.M. Shao, Y.B. Fan, S.C. Zhang, K. Liu, J. Xia, K.L. Wang, Science 357, 294 (2017) ADSMathSciNetCrossRefGoogle Scholar
- 8.A. Alase, E. Cobanera, G. Ortiz, L. Viola, Phys. Rev. Lett. 117, 076804 (2016) ADSCrossRefGoogle Scholar
- 9.E. Bocquillon, R.S. Deacon, J. Wiedenmann, P. Leubner, T.M. Klapwijk, C. Brne, K. Ishibashi, H. Buhmann, L.W. Molenkamp, Nat. Nanotechnol. 12, 137 (2017) ADSCrossRefGoogle Scholar
- 10.C. Kurter, A.D.K. Finck, Y.S. Hor, D.J. Van Harlingen, Nat. Commun. 6, 7130 (2015) ADSCrossRefGoogle Scholar
- 11.S.M. Albrecht, A.P. Higginbotham, M. Madsen, F. Kuemmeth, T.S. Jespersen, J. Nygård, P. Krogstrup, C.M. Marcus, Nature 531, 206 (2016) ADSCrossRefGoogle Scholar
- 12.C.K. Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Rev. Mod. Phys. 88, 035005 (2016) ADSCrossRefGoogle Scholar
- 13.V. Mourik, K. Zuo, S.M. Frolov, S.R. Plissard, E.P.A.M. Bakkers, L.P. Kouwenhoven, Science 336, 1003 (2012) ADSCrossRefGoogle Scholar
- 14.J. Liu, J. Wang, F.C. Zhang, Phys. Rev. B 90, 035307 (2014) ADSCrossRefGoogle Scholar
- 15.A. Kitaev, Phys. Usp. 44, 131 (2001) ADSCrossRefGoogle Scholar
- 16.R.M. lutchyn, J.D. Sau, S. Das, Phys. Rev. Lett. 105, 077001 (2010) ADSCrossRefGoogle Scholar
- 17.Y. Oreg, G. Refael, F.V. Oppen, Phys. Rev. Lett. 105, 177002 (2010) ADSCrossRefGoogle Scholar
- 18.J. Alicea, Y. Oreg, G. Refael, F. von Oppen, M.P.A. Fisher, Nat. Phys. 7, 412 (2011) CrossRefGoogle Scholar
- 19.F. Hassler, A.R. Akhmerov, C.W.J. Beenakker, New J. Phys. 13, 095004 (2011) ADSCrossRefGoogle Scholar
- 20.A.R. Akhmerov, J. Nilsson, C.W.J. Beenakker, Phys. Rev. Lett. 102, 216404 (2009) ADSCrossRefGoogle Scholar
- 21.A. Das, Y. Ronen, Y. Most, Y. Oreg, M. Heiblum, H. Shtrikman, Nat. Phys. 8, 887 (2012) CrossRefGoogle Scholar
- 22.M.T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff, H.Q. Xu, Nano Lett. 12, 6414 (2012) ADSCrossRefGoogle Scholar
- 23.L. Jiang, D. Pekker, J. Alicea, G. Refael, Y. Oreg, F.V. Oppen, Phys. Rev. Lett. 107, 236401 (2011) ADSCrossRefGoogle Scholar
- 24.L.P. Rokhinson, X.Y. Liu, J.K. Furdyna, Nat. Phys. 8, 795 (2012) CrossRefGoogle Scholar
- 25.M. T. Deng, C.L. Yu, G.Y. Huang, M. Larsson, P. Caroff, H.Q. Xu, Sci. Rep. 4, 7261 (2014) ADSCrossRefGoogle Scholar
- 26.M. Veldhorst, C.G. Molenaar, X.L. Wang, H. Hilgenkamp, A. Brinkman, Appl. Phys. Lett. 100, 072602 (2012) ADSCrossRefGoogle Scholar
- 27.N. Read, D. Green Phys. Rev. B. 61, 10267 (1999) CrossRefGoogle Scholar
- 28.D.A. Ivanov, Phys. Rev. Lett. 86, 268 (2001) ADSCrossRefGoogle Scholar
- 29.L. Fu, C.L. Kane, Phys. Rev. Lett. 102, 216403 (2009) ADSCrossRefGoogle Scholar
- 30.J.D. Sau, R.M. Lutchyn, S. Tewari, S. Das Sarma, Phys. Rev. Lett. 104, 040502 (2010) ADSCrossRefGoogle Scholar
- 31.K.T. Law, P.A. Lee, T.K. Ng, Phys. Rev. Lett. 103, 237001 (2009) ADSCrossRefGoogle Scholar
- 32.J.P. Xu, M.X. Wang, Z.L. Liu, J.F. Ge, X.J. Yang, C.H. Liu, Z.A. Xu, D.D. Guan, C.L. Gao, D. Qian, Y. Liu, Q.H. Wang, F.C. Zhang, Q.K. Xue, J. F. Jia, Phys. Rev. Lett. 114, 017001 (2015) ADSCrossRefGoogle Scholar
- 33.H.H. Sun, K.W. Zhang, L.H. Hu, C. Li, G.Y. Wang, H.Y. Ma, Z.A. Xu, C.L. Gao, D.D. Guan, Y.Y. Li, C.H. Liu, D. Qian, Y. Zhou, L. Fu, S.C. Li, F.C. Zhang, J.F. Jia, Phys. Rev. Lett. 116, 257003 (2016) ADSCrossRefGoogle Scholar
- 34.D. Aasen, M. Hell, R.V. Mishmash, A. Higginbotham, J. Danon, M. Leijnse, T.S. Jespersen, J.A. Folk, C.M. Marcus, K. Flensberg, J. Alicea, Phys. Rev. X 6, 031016 (2016) Google Scholar
- 35.K. Flensberg, Phys. Rev. Lett. 106, 090503 (2011) ADSCrossRefGoogle Scholar
- 36.M. Leijnse, K. Flensberg, Semicond. Sci. Technol. 27, 124003 (2012) ADSCrossRefGoogle Scholar
- 37.Z. Wang, X.Y. Hu, Q.F. Liang, X. Hu, Phys. Rev. B 87, 214513 (2013) ADSCrossRefGoogle Scholar
- 38.Z. Wang, Q.F. Liang, D.X. Yao, X. Hu, Sci. Rep. 5, 11686 (2015) ADSCrossRefGoogle Scholar
- 39.M.T. Deng, S. Vaitiekenas, E.B. Hansen, J. Danon, M. Leijnse, K. Flensberg, J. Nygard, P. Krogstrup, C.M. Marcus, Science 354, 1557 (2016) ADSCrossRefGoogle Scholar
- 40.E. Prada, R. Aguado, P. San-Jose, Phys. Rev. B 96, 085418 (2017) ADSCrossRefGoogle Scholar