Concept of information laser: from quantum theory to behavioural dynamics

Abstract

Recently, the methods of quantum theory, especially quantum information, started to be widely applied outside of physics: in cognitive, social sciences, economics, finance, decision making and biology. We propose a quantum-like model: the “information laser”. The basic assumption is the discrete structure of state spaces related to the quantization of information. The information field acts in the form of indistinguishable quanta of “social energy” analogue to photons. The massive flow of information acts as a laser pump. In this framework, an information selection process by agents under constant pressure of massive repeated information leads to collective “resonance” effects in analogy with laser cavity and stimulated emission. In order to make operational parallels between physical lasers and the information laser we identify the essential features of laser operation. An application to the analysis of recent disruptive social events (colour revolutions) is discussed. Social analogues to the laser are also considered through the model of Echo Chambers induced by the Internet and Adam Smith’s invisible hand.

References

  1. 1.

    A. Khrennikov, Philos. Trans. R. Soc. 374, 20150094 (2016)

    ADS  Article  Google Scholar 

  2. 2.

    A. Khrennikov, Entropy 17, 6969 (2015)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    F. Dubois, Res-Systemica 5, 55 (2006)

    Google Scholar 

  4. 4.

    F. Dubois, Z. Toffano, Eigenlogic: a quantum view for multiple-valued and fuzzy systems, in Quantum interaction, QI 2016, LNCS (Springer, Berlin, 2017), Vol. 10106, pp. 239–251

  5. 5.

    H. Haken, Synergetics (Springer, Berlin, 1977)

  6. 6.

    M. Lax, W. Cai, M. Xu, et al., Random processes in physics and finance (Oxford University Press, Oxford, 2006)

  7. 7.

    A. Khrennikov, Information dynamics in cognitive, psychological, social, and anomalous phenomena, in Fundamental Theories of Physics (Kluwer, Dordrecht, 2004)

  8. 8.

    A. Khrennikov, Ubiquitous quantum structure (Springer, Berlin, 2010)

  9. 9.

    J. Busemeyer, P. Bruza, Quantum models of cognition and decision (Cambridge University Press, Cambridge, 2012)

  10. 10.

    E. Haven, A. Khrennikov, Quantum social science (Cambridge University Press, Cambridge, 2013)

  11. 11.

    M. Asano, A. Khrennikov, M. Ohya, Y. Tanaka, I. Yamato, Quantum adaptivity in biology: from genetics to cognition (Springer, Berlin, 2015)

  12. 12.

    E. Haven, A. Khrennikov (Eds.), The Palgrave handbook of quantum models in social science: applications and grand challenges (Palgrave Macmillan, Basingstoke, UK, 2017)

  13. 13.

    E. Haven, A. Khrennikov, T.R. Robinson, Quantum methods in social science: a first course (WSP, Singapore, 2017)

  14. 14.

    A. Khrennikov, Found. Phys. 29, 1065 (1999)

    MathSciNet  Article  Google Scholar 

  15. 15.

    A. Khrennikov, Biosystems 70, 211 (2003)

    Article  Google Scholar 

  16. 16.

    A. Khrennikov, Open Syst. Inform. Dyn. 11, 267 (2004)

    Article  Google Scholar 

  17. 17.

    M.E. Pothos, J.R. Busemeyer, Proc. R. Soc. B 276, 2171 (2009)

    Article  Google Scholar 

  18. 18.

    A. Brandenburger, Game Econ. Behav. 69, 175 (2010)

    MathSciNet  Article  Google Scholar 

  19. 19.

    E.M. Pothos, J.R. Busemeyer, Behav. Brain Sci. 36, 255 (2013)

    Article  Google Scholar 

  20. 20.

    A. Khrennikov, I. Basieva, E.N. Dzhafarov, J.R. Busemeyer, PLoS One 9, e110909 (2014)

    ADS  Article  Google Scholar 

  21. 21.

    T. Boyer-Kassem, S. Duchene, E. Guerci, Theory Decis. 10, 1 (2015)

    Google Scholar 

  22. 22.

    M. Asano, I. Basieva, A. Khrennikov, M. Ohya, Y. Tanaka, J. Math. Psychol. 78, 2 (2017)

    Article  Google Scholar 

  23. 23.

    T. Takahashi, S.-J. Kim, M. Narusec, Prog. Biophys. Mol. Biol. 130, 103 (2017)

    Article  Google Scholar 

  24. 24.

    R. Penrose, The Emperor’s new mind (Oxford University Press, New York, 1989)

  25. 25.

    S. Hameroff, J. Conscious. Stud. 1, 91 (1994)

    Google Scholar 

  26. 26.

    C. Brukner, A. Zeilinger, Phys. Rev. Lett. 83, 3354 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  27. 27.

    G.-M. D’Ariano, AIP Conf. Proc. 889, 79 (2007)

    ADS  Article  Google Scholar 

  28. 28.

    A. Plotnitsky, Proc. Conf. Quantum Theory 2, 309 (2002)

    Google Scholar 

  29. 29.

    C.A. Fuchs, R. Schack, Found. Phys. 41, 345 (2011)

    ADS  MathSciNet  Article  Google Scholar 

  30. 30.

    J. von Neumann, O. Morgenstern, Theory of games and economic behaviour (Princeton University Press, Princeton, NJ, 1944)

  31. 31.

    A. Tversky, D. Kahneman, Science 185, 1124 (1974)

    ADS  Article  Google Scholar 

  32. 32.

    D. Tversky, D. Kahneman, J. Risk Uncertain. 5, 297 (1992)

    Article  Google Scholar 

  33. 33.

    H. Haken, Light: vol. II: laser light dynamics (North-Holland Physics Publishing, Amsterdamn, 1985)

  34. 34.

    M. Fox, Quantum optics: an introduction (Oxford University Press, Oxford, 2006)

  35. 35.

    R. Hanbury Brown, R.Q. Twiss, Nature 177, 27 (1956)

    ADS  Article  Google Scholar 

  36. 36.

    C.K. Hong, Z.Y. Ou, L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)

    ADS  Article  Google Scholar 

  37. 37.

    H.M. Wiseman, Phys Scripta 91, 033001

  38. 38.

    W. Elsäβer, arXiv:1607.03647

  39. 39.

    Z. Toffano, IEEE J. Sel. Top. Quantum Electron. 3, 485 (1997)

    ADS  Article  Google Scholar 

  40. 40.

    A.L. Schawlow, C.H. Townes, Phys. Rev. 112, 1940 (1958)

    ADS  Article  Google Scholar 

  41. 41.

    A. Orszag, in Les Lasers, principes, réalisations, applications (Masson et Cie, Paris, 1968), Chap. V

  42. 42.

    F. Bagarello, E. Haven, Phys. Scr. 90, 015203 (2015)

    ADS  Article  Google Scholar 

  43. 43.

    P. Khrennikova, J. Math. Psychol., 78, 76 (2017)

    MathSciNet  Article  Google Scholar 

  44. 44.

    P. Barberá, J.T. Jost, J. Nagler, J.A. Tucker, R. Bonneau, Psychol. Sci. 26, 1531 (2015)

    Article  Google Scholar 

  45. 45.

    A. Smith, An inquiry into the nature and causes of the Wealth of Nations( 1776), (reprinted) (University of Chicago Press, Chicago, 1977)

  46. 46.

    B. Falkenburg, Poznan Stud. Philos. Sci. Humanit 96, 207 (2008)

    Google Scholar 

  47. 47.

    C.Z. Ning, IEEE J. Sel. Top. Quantum Electron. 19, 6516933 (2013)

    Article  Google Scholar 

  48. 48.

    T. Erneux, P. Glorieux, Laser dynamics (Cambridge University Press, Cambridge, 2010)

  49. 49.

    S. Grauwin, E. Bertin, R. Lemoy, P. Jensen, Proc. Natl. Am. Sci. USA 106, 20622 (2009)

    ADS  Article  Google Scholar 

  50. 50.

    C. Jaeger, G. Horn, T. Lux, D. Fricke, S. Frurst, W. Lass, L. Lin, A. Mandel, F. Meissner, S. Schreiber, D. Vesper, R. Zwiener, From the financial crisis to sustainability, Potsdam, European Climate Forum, 2009. www.european-climate-forum.net/index.php?id=ecfreports

  51. 51.

    R. Collins, Interaction ritual chains (Princeton University Press, Princeton, 2004)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov.

Rights and permissions

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khrennikov, A., Toffano, Z. & Dubois, F. Concept of information laser: from quantum theory to behavioural dynamics. Eur. Phys. J. Spec. Top. 227, 2133–2153 (2019). https://doi.org/10.1140/epjst/e2018-800027-6

Download citation