Skip to main content
Log in

On fractional systems with Riemann-Liouville derivatives and distributed delays – Choice of initial conditions, existence and uniqueness of the solutions

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

A comparative analysis among the possible types of initial conditions including (or not) derivatives in the Riemann-Liouville sense for incommensurate fractional differential systems with distributed delays is proposed. The provided analysis is essentially based on the possibility to attribute physical meaning to the initial conditions expressed in terms of Riemann-Liouville fractional derivatives. This allows the values of the initial functions for the mentioned initial conditions to be obtained by appropriate measurements or observations. In addition, an initial problem with non-continuous initial conditions partially expressed in terms of Riemann-Liouville fractional derivatives is considered and existence and uniqueness of a (1 − α)-continuous solution of this initial problem is proved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and applications of fractional differential equations (Elsevier Science B.V., Amsterdam, 2006)

  2. V. Kiryakova, Generalized fractional calculus and applications (Longman Scientific and Technical, Harlow, 1994)

  3. I. Podlubny, Fractional differential equation (Academic Press, San Diego, 1999)

  4. Y. Li, Y.Q. Chen, I. Podlubny, Autom. J. IFAC 45, 1965 (2009)

    Article  Google Scholar 

  5. Kai Diethelm, The analysis of fractional differential equations, an application-oriented exposition using differential operators of Caputo type, Lecture notes in mathematics (Springer-Verlag, Berlin, 2010), Vol. 2004

  6. M. Feckan, J. Wang, M. Pospisil, Fractional-order equations and inclusions (De Gruyter, 2017)

  7. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus: models and numerical methods (World Scientific Publishing Co. Pte. Ltd., Singapore, 2017)

  8. V. Tarasov, Fract. Calc. Appl. Anal. 19, 1200 (2016)

    MathSciNet  Google Scholar 

  9. H. Zhou, P. Agarwal, Adv. Differ. Equ. 329, 13 (2017)

    Google Scholar 

  10. I.O. Kiymaz, P. Agarwal, S. Jain, A. Cetinkaya, in Advances in real and complex analysis with applications (Birkhauser, 2017), 261

  11. H. Zhou, L. Yang, P. Agarwal, J. Appl. Math. Comput. 53, 51 (2017)

    Article  MathSciNet  Google Scholar 

  12. P. Agarwal, E. Karimov, M. Mamchuev, M. Ruzhansky, Recent applications of harmonic analysis to function spaces, differential equations, and data science, in Appl. Numer. Harmon. Anal. (Springer, Birkhauser, Cham 2017), 707

  13. V.D. Mil’man, A.D. Myshkis, Siberian Math. J. 1, 233 (1960)

    Google Scholar 

  14. J. Angelova, A. Dishliev, S. Nenov, Comput. Math. Appl. 43, 1203 (2002)

    Article  MathSciNet  Google Scholar 

  15. G.T. Stamov, I.M. Stamova, J.O. Alzabut, Nonlinear Anal. Hybrid Syst. 6, 818 (2012)

    Article  MathSciNet  Google Scholar 

  16. G.T. Stamov, J.O. Alzabut, Nonlinear Anal. Theory Methods Appl. Ser. A Theory Methods 74, 4653 (2011)

    Article  Google Scholar 

  17. I.M. Stamova, G.T. Stamov, Commun. Nonlinear Sci. Numer. Simulat. 19, 702 (2014)

    Article  ADS  Google Scholar 

  18. I. Stamova, G. Stamov, Functional and impulsive differential equations of fractional order. Qualitative analysis and applications (CRC Press, Boca Raton, FL, 2017)

  19. A. Myshkis, Linear differential equations with retarded argument, 2nd edn. (Izdat. Nauka, Moscow, 1972)

  20. J. Hale, S. Lunel, Introduction to functional differential equations (Springer-Verlag, New York, 1993)

  21. D. Boyadzhiev, H. Kiskinov, M. Veselinova, A. Zahariev, Fract. Calc. Appl. Anal. 20, 914 (2017)

    Article  MathSciNet  Google Scholar 

  22. H. Kiskinov, N. Milev, A. Zahariev, AIP Conf. Proc. 1910, 050009 (2017)

    Article  Google Scholar 

  23. M. Veselinova, H. Kiskinov, A. Zahariev, AIP Conf. Proc. 1690, 040013 (2015)

    Article  Google Scholar 

  24. M. Veselinova, H. Kiskinov, A. Zahariev, AIP Conf. Proc. 1789, 040005 (2016)

    Article  Google Scholar 

  25. M. Veselinova, H. Kiskinov, A. Zahariev, Commun. Appl. Anal. 20, 325 (2016)

    Google Scholar 

  26. M. Milev, S. Zlatev, Int. J. Pure Appl. Math. 115, 873 (2017)

    Article  Google Scholar 

  27. M. Veselinova, H. Kiskinov, A. Zahariev, Filomat 30, 841 (2016)

  28. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional integrals and derivatives: theory and applications (Gordon and Breach Science Publishers, Amsterdam, 1993)

  29. I. Podlubny, Fract Calc. Appl. Anal. 5, 367 (2002)

    MathSciNet  Google Scholar 

  30. N. Heymans, I. Podlubny, Rheol. Acta 45, 765 (2006)

    Article  Google Scholar 

  31. R.R. Nigmatullin, Theoret. Math. Phys. 90, 242 (1992)

    Article  MathSciNet  Google Scholar 

  32. F-Y. Ren, Z-G. Yu, F. Su, Phys. Lett. A 219, 59 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  33. Z-G. Yu, F-Y. Ren, J. Zhou, J. Phys. A: Math. Gen. 30, 5569 (1997)

    Article  ADS  Google Scholar 

  34. R.S. Rutman, Theor. Math. Phys. 100, 1154 (1994)

    Article  Google Scholar 

  35. R.S. Rutman, Theor. Math. Phys. 105, 1509 (1995)

    Article  Google Scholar 

  36. R. Nigmatullin, A. Le Mehaute, J. Non-Cryst. Sol. 351, 2888 (2005)

    Article  ADS  Google Scholar 

  37. F. Mainardi, Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models (Imperial College Press, London, 2010)

  38. Z. Jiao, Y.Q. Chen, I. Podlubny, Distributed-order dynamic systems: stability, simulation, applications and perspectives, Springer-Brief (Springer-Verlag, 2012)

  39. T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with applications in mechanics, vibrations and diffusion processes (John Wiley and Sons, Inc., 2014)

  40. T. Atanackovic, S. Pilipovic, B. Stankovic, D. Zorica, Fractional calculus with applications in mechanics, wave propagation, impact and variational principles (John Wiley and Sons, Inc., 2014)

  41. R. Nigmatullin, D. Baleanu, Int. J. Theor. Phys. 49, 701 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hristo Kiskinov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiskinov, H., Zahariev, A. On fractional systems with Riemann-Liouville derivatives and distributed delays – Choice of initial conditions, existence and uniqueness of the solutions. Eur. Phys. J. Spec. Top. 226, 3473–3487 (2017). https://doi.org/10.1140/epjst/e2018-00077-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00077-9

Navigation