Advertisement

Quasiparticle cooling using a topological insulator–superconductor hybrid junction

  • Dario Bercioux
  • Procolo Lucignano
Regular Article
Part of the following topical collections:
  1. Topological States of Matter: Theory and Application

Abstract

In this work, we investigate the thermoelectric properties of a hybrid junction realised coupling surface states of a three-dimensional topological insulator with a conventional s-wave superconductor. We focus on the ballistic devices and study the quasiparticle flow, carrying both electric and thermal currents, adopting a scattering matrix approach based on conventional Blonder–Tinkham–Klapwijk formalism. We calculate the cooling efficiency of the junction as a function of the microscopic parameters of the normal region (i.e. the chemical potential, etc.). The cooling power increases when moving from a regime of Andreev specular-reflection to a regime where Andreev retro-reflection dominates. Differently from the case of a conventional N/S interface, we can achieve efficient cooling of the normal region, without including any explicit impurity scattering at the interface, to increase normal reflection.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Xu, Y. Xu, J. Zhu, npj Quantum Mater. 2, 105 (2017) Google Scholar
  2. 2.
    J.P. Heremans, V. Jovovic, E.S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, G.J. Snyder, Science 321, 554 (2008) ADSCrossRefGoogle Scholar
  3. 3.
    K. Biswas et al., Nature 489, 414 (2012) ADSCrossRefGoogle Scholar
  4. 4.
    L. Kranz et al., Nat. Commun. 4, 894 (2013) CrossRefGoogle Scholar
  5. 5.
    M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010) ADSCrossRefGoogle Scholar
  6. 6.
    X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011) ADSCrossRefGoogle Scholar
  7. 7.
    Y. Ando, J. Phys. Soc. Jpn 82, 102001 (2013) ADSCrossRefGoogle Scholar
  8. 8.
    J.H. Bardarson, J.E. Moore, Rep. Prog. Phys. 76, 056501 (2013) ADSCrossRefGoogle Scholar
  9. 9.
    S. Murakami et al., J. Phys.: Conf. Ser. 334, 012013 (2011) Google Scholar
  10. 10.
    R. Takahashi, S. Murakami, Semicond. Sci. Technol. 27, 124005 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    A. Bardas, D. Averin, Phys. Rev. B 52, 12873 (1995) ADSCrossRefGoogle Scholar
  12. 12.
    F. Giazotto, T.T. Heikkilä, A. Luukanen, A.M. Savin, J.P. Pekola, Rev. Mod. Phys. 78, 217 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    P.J. Lowella, G.C. O’Neil, J.M. Underwood, J.N. Ullom, App. Phys. Lett. 102, 082601 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    S. Rajauria et al., Phys. Rev. Lett. 100, 201002 (2008) CrossRefGoogle Scholar
  15. 15.
    F. Giazotto, F. Taddei, R. Fazio, F. Beltram, Appl. Phys. Lett. 80, 3784 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    S.A. Wolf et al., Science 14294, 1488 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    S. Kawabata et al., Appl. Phys. Lett. 103, 032602 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    C.W.J. Beenakker, Phys. Rev. Lett. 97, 067007 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    J. Wiedenmann et al., Phys. Rev. B 96, 165302 (2017) ADSCrossRefGoogle Scholar
  20. 20.
    H. Li, Y.Y. Zhao, J. Phys.: Condens. Matter 29, 465001 (2017) ADSGoogle Scholar
  21. 21.
    L. Majidi, R. Asgari, Phys. Rev. B 93, 1228 (2016) CrossRefGoogle Scholar
  22. 22.
    D. Bercioux, P. Lucignano, Rep. Prog. Phys. 78, 106001 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    L. Fu, C. Kane, Phys. Rev. Lett. 100, 096407 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    T.D. Stanescu, J.D. Sau, R.M. Lutchyn, S. Das Sarma, Phys. Rev. B 81, 241310 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    G. Tkachov, E.M. Hankiewicz, Phys. Stat. Sol. (b) 250, 215 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    L. Galletti et al., Phys. Rev. B 89, 134512 (2014) ADSCrossRefGoogle Scholar
  27. 27.
    M. Veldhorst et al., Nat. Mater. 11, 417 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    P.G. De Gennes, Superconductivity of metals and alloys (Westview Press, USA, 1999) Google Scholar
  29. 29.
    G. Tkachov, E.M. Hankiewicz, Phys. Rev. B 88, 075401 (2013) ADSCrossRefGoogle Scholar
  30. 30.
    J. Cayssol, Phys. Rev. Lett. 100, 147001 (2008) ADSCrossRefGoogle Scholar
  31. 31.
    G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982) ADSCrossRefGoogle Scholar
  32. 32.
    N.A. Mortensen, K. Flensberg, A.-P. Jauho, Phys. Rev. B 59, 10176 (1999) ADSCrossRefGoogle Scholar
  33. 33.
    M.M. Leivo, J.P. Pekola, D.V. Averin, Appl. Phys. Lett. 68, 1996 (1998) ADSCrossRefGoogle Scholar
  34. 34.
    M. Rouco, T.T. Heikkilä, F.S. Bergeret, Phys. Rev. B 97, 014529 (2018) ADSCrossRefGoogle Scholar
  35. 35.
    J. Linder, A. Sudbo, Phys. Rev. B 77, 064507 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    B. Sothmann, E.M. Hankiewicz, Phys. Rev. B 94, 081407 (2016) ADSCrossRefGoogle Scholar
  37. 37.
    B. Sothmann, F. Giazotto, E.M. Hankiewicz, New J. Phys. 19, 023056 (2017) ADSCrossRefGoogle Scholar
  38. 38.
    P. Schwab, R. Raimondi, C. Gorini, EPL 93, 67004 (2011) ADSCrossRefGoogle Scholar
  39. 39.
    D. Culcer, Physica E 44, 860 (2012) ADSCrossRefGoogle Scholar
  40. 40.
    S. Weinberg, The Quantum Theory of Fields (Cambridge University Press, Cambridge, England, 1995) Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Donostia International Physics Center (DIPC)San SebastiánSpain
  2. 2.IKERBASQUE, Basque Foundation of ScienceBilbaoSpain
  3. 3.CNR-SPIN, Monte S.AngeloNapoliItaly
  4. 4.Dipartimento di Fisica “E. Pancini”, Universitá di Napoli “Federico II”NapoliItaly

Personalised recommendations