Skip to main content
Log in

Variation of constant formula for the solution of interval differential equations of non-integer order

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In the recent years some efforts were made to propose simple and well-behaved fractional derivatives that inherits the classical properties from the first order derivative. Therefore, we propose in this research a new strategy to acquire interval solution of fractional interval differential equations (FIDEs) under interval fractional conformable derivative. This scheme is developed based on a variation of the constant formula to achieve the solution explicitly. The important characteristic of this technique is that it helps us to find a solution with decreasing length of its support which is critical for the solutions based on the interval or fuzzy notions. Two examples are experienced to illustrate our approach and validate it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Baleanu, K. Diethelm, E. Scalas, J.J. Trujillo, Fractional calculus: models and numerical methods (World Scientific, 2012)

  2. I. Podlubny, Fractional differential equations (Academic Press, San Diego, CA, 1999)

  3. O.P. Agrawal, J.A. Tenreiro-Machado, I. Sabatier, Fractional derivatives and their applications, in Nonlinear dynamics (Springer-Verlag, Berlin, 2004), Vol. 38

  4. D. Baleanu, Z.B. Güvenç, J.A. Tenreiro Machado (Eds.) New trends in nanotechnology and fractional calculus applications (Springer, New York, 2010)

  5. I. Stamova, G. Stamov, Functional and impulsive differential equations of fractional order: qualitative analysis and applications (CRC Press, 2017)

  6. I. Stamova, Appl. Math. Comput. 237, 605 (2014)

    MathSciNet  Google Scholar 

  7. J.O. Alzabut, T. Abdeljawad, J. Fract. Calc. Appl. 5, 177 (2014)

    MathSciNet  Google Scholar 

  8. S. Sun, T. Abdeljawad, J. Alzabut, Discr. Dyn. Nat. Soc. 2013, Article ID 609861 (2013)

    Google Scholar 

  9. X.L. Ding, J.J. Nieto, J. Comput. Nonlinear Dyn. 12, 031018 (2017)

    Article  Google Scholar 

  10. A.B. Malinowska, D.F.M. Torres, Introduction to the fractional calculus of variations (World Scientific Publishing Co Inc., 2012)

  11. Y. Zhou, F. Jiao, Comput. Math. Appl. 59, 1063 (2010)

    Article  MathSciNet  Google Scholar 

  12. G. Stamov, I. Stamova, Neural Comput. Appl. 28, 3307 (2016)

    Article  Google Scholar 

  13. G. Stamov, I. Stamova, IMA J. Appl. Math. 80, 1619 (2015)

    Article  MathSciNet  Google Scholar 

  14. D. Benson, S.W. Wheatcraft, M.M. Meerschaert, Water Resour. Res. 36, 1413 (2000)

    Article  ADS  Google Scholar 

  15. R. Khalil, M. Al Horani, A. Yousef, M. Sababhehb, J. Comput. Appl. Math. 264, 65 (2014)

    Article  MathSciNet  Google Scholar 

  16. T. Abdeljawad, J. Comput. Appl. Math. 279, 57 (2015)

    Article  MathSciNet  Google Scholar 

  17. S. Markov, Computing 22, 325 (1979)

    Article  MathSciNet  Google Scholar 

  18. V. Lupulescu, Fuzzy Sets Syst. 265, 63 (2015)

    Article  Google Scholar 

  19. M.T. Malinowski, Appl. Math. Lett. 24, 2118 (2011)

    Article  MathSciNet  Google Scholar 

  20. M.T. Malinowski, Inform. Sci. 213, 94 (2012)

    Article  MathSciNet  Google Scholar 

  21. V. Lupulescu, Inform. Sci. 248, 50 (2013)

    Article  MathSciNet  Google Scholar 

  22. Y. Chalco-Cano, W.A. Lodwick, B. Bede, Fuzzy Sets Syst. 257, 146 (2014)

    Article  Google Scholar 

  23. L. Stefanini, Fuzzy Sets Syst. 161, 1564 (2010)

    Article  Google Scholar 

  24. S. Salahshour, A. Ahmadian, F. Ismail, D. Baleanu, Optik 130, 273 (2017)

    Article  ADS  Google Scholar 

  25. A. Ahmadian, S. Salahshour, C.S. Chan, D. Baleanu, Fuzzy Sets Syst. 331, 47 (2018)

    Article  Google Scholar 

  26. R.P. Agarwal, V. Lakshmikantham, J.J. Nieto, Nonlinear Anal. 72, 2859 (2010)

    Article  MathSciNet  Google Scholar 

  27. R.P. Agarwal, S. Arshad, D. O’Regan, V. Lupulescu, Fract. Calc. Appl. Anal. 15, 572 (2012)

    Article  MathSciNet  Google Scholar 

  28. S. Arshad, V. Lupulescu, Nonlinear Anal. 74, 85 (2011)

    Article  Google Scholar 

  29. T. Allahviranloo, S. Salahshour, S. Abbasbandy, Soft Comput. 16, 297 (2012)

    Article  Google Scholar 

  30. N.V. Hoa, Fuzzy Sets Syst. 280, 58 (2015)

    Article  Google Scholar 

  31. S. Salahshour, T. Allahviranloo, S. Abbasbandy, D. Baleanu, Adv. Diff. Equ. 2012, 112 (2012)

    Article  Google Scholar 

  32. M.T. Malinowski, Fuzzy Sets Syst. 265, 39 (2015)

    Article  Google Scholar 

  33. S. Salahshour, T. Allahviranloo, S. Abbasbandy, Commun. Nonlinear Sci. Numer. Simul. 17, 1372 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  34. S. Salahshour, A. Ahmadian, N. Senu, D. Baleanu, P. Agarwal, Entropy 17, 885 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  35. A. Ahmadian, C.S. Chang, S. Salahshour, IEEE Trans. Fuzzy Syst. 25, 218 (2017)

    Article  Google Scholar 

  36. A. Ahmadian, M. Suleiman, S. Salahshour, D. Baleanu, Adv. Diff. Equ. 2013, 104 (2013)

    Article  Google Scholar 

  37. A. Ahmadian, S. Salahshour, D. Baleanu, H. Amirkhani, R. Yunus, J. Comput. Phys. 294, 562 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  38. A. Khastan, J. Comput. Appl. Math. 312, 156 (2017)

    Article  MathSciNet  Google Scholar 

  39. A. Khastan, Soft Comput. 21, 3503 (2017)

    Article  Google Scholar 

  40. H. Sun, X. Song, Y. Chen, A class of fractional dynamic systems with fuzzy order, in 2010 8th World Congress on Intelligent Control and Automation (WCICA) (IEEE, 2010), pp. 197–201

  41. H. Sun, H. Sheng, Y. Chen, W. Chen, Z. Yu, Chin. Phys. Lett. 30, 046601 (2013)

    Article  ADS  Google Scholar 

  42. B. Bede, I.J. Rudas, A.L. Bencsik, Inform. Sci. 177, 1648 (2007)

    Article  MathSciNet  Google Scholar 

  43. A. Khastan, Alireza, J.J. Nieto, R. Rodríguez-López, Fuzzy Sets Syst. 177, 20 (2011)

    Article  Google Scholar 

  44. B. Bede, S.G. Gal, Fuzzy Sets Syst. 151, 581 (2005)

    Article  Google Scholar 

  45. M. Chehlabi, T. Allahviranloo, Appl. Soft Comput. 44, 108 (2016)

    Article  Google Scholar 

  46. S. Salahshour, A. Ahmadian, F. Ismail, D. Baleanu, N. Senu, Adv. Mech. Eng. (2015), https://doi.org/10.1177/1687814015619138

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Salahshour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahshour, S., Ahmadian, A. & Baleanu, D. Variation of constant formula for the solution of interval differential equations of non-integer order. Eur. Phys. J. Spec. Top. 226, 3501–3512 (2017). https://doi.org/10.1140/epjst/e2018-00064-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00064-2

Navigation