Abstract
We examine the role of long-range interactions on the dynamical and statistical properties of two 1D lattices with on-site potentials that are known to support discrete breathers: the Klein–Gordon (KG) lattice which includes linear dispersion and the Gorbach–Flach (GF) lattice, which shares the same on-site potential but its dispersion is purely nonlinear. In both models under the implementation of long-range interactions (LRI), we find that single-site excitations lead to special low-dimensional solutions, which are well described by the undamped Duffing oscillator. For random initial conditions, we observe that the maximal Lyapunov exponent λ scales as N−0.12 in the KG model and as N−0.27 in the GF with LRI, suggesting in that case an approach to integrable behavior towards the thermodynamic limit. Furthermore, under LRI, their non-Gaussian momentum distributions are distinctly different from those of the FPU model.
This is a preview of subscription content, log in to check access.
References
- 1.
C. Anteneodo, C. Tsallis, Phys. Rev. Lett. 80, 5313 (1998)
- 2.
V. Latora, A. Rapisarda, S. Ruffo, Phys. Rev. Lett. 80, 692 (1998)
- 3.
L.J.L. Cirto, V. Assis, C. Tsallis, Physica A 393, 286 (2013)
- 4.
H. Christodoulidi, C. Tsallis, T. Bountis, Europhys. Lett. 108, 40006 (2014)
- 5.
H. Christodoulidi, T. Bountis, C. Tsallis, L. Drossos, J. Stat. Mech. 2016, 123206 (2016)
- 6.
G. Miloshevich, T. Dauxois, R. Khomeriki, S. Ruffo, Europhys. Lett. 104, 17011 (2013)
- 7.
G. Miloshevich, J.P. Nguenang, T. Dauxois, R. Khomeriki, S. Ruffo, Phys. Rev. E 91, 032927 (2015)
- 8.
G. Miloshevich, J.P. Nguenang, T. Dauxois, R. Khomeriki, S. Ruffo, J. Phys. A: Math. Theor. 50, 12LT02 (2017)
- 9.
S. Gupta, S. Ruffo, Int. J. Mod. Phys. A 32, 1741018 (2017)
- 10.
S. Iubini, P. Di Cintio, S. Lepri, R. Livi, L. Casetti, Phys. Rev. E 97, 032102 (2018)
- 11.
D. Bagchi, C. Tsallis, Phys. Rev. E 93, 062213 (2016)
- 12.
D. Bagchi, Phys. Rev. E 95, 032102 (2017)
- 13.
D. Bagchi, Phys. Rev. E 96, 042121 (2017)
- 14.
D. Bagchi, C. Tsallis, Physica A 491, 869 (2018)
- 15.
E. Fermi, J. Pasta, S. Ulam, Los Alamos, Report No. LA-1940, 1955
- 16.
A.V. Gorbach, S. Flach, Phys. Rev. E 72, 056607 (2005)
- 17.
M.V. Ivanchenko, O.I. Kanakov, V.D. Shalfeev, S. Flach, Physica D 198, 120 (2004)
- 18.
P. Maniadis, T. Bountis, Phys. Rev. E 73, 046211 (2006)
- 19.
R.S. MacKay, S. Aubry, Nonlinearity 7, 1623 (1994)
- 20.
S. Flach, Phys. Rev. E 51, 3579 (1995)
- 21.
J.M. Bergamin, T. Bountis, C. Jung, J. Phys. A: Math. Gen. 33, 8059 (2000)
- 22.
J.M. Bergamin, T. Bountis, M.N. Vrahatis, Nonlinearity 15, 1603 (2002)
- 23.
S. Flach, Phys. Rev. E 58, R4116 (1998)
- 24.
L. Casetti, R. Livi, M. Pettini, Phys. Rev. Lett. 74, 375 (1995)
- 25.
C. Tsallis, Stat. Phys. 52, 479 (1988) First appeared as preprint in 1987: CBPF-NF-062/87, ISSN 0029-3865, Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro
- 26.
M. Gell-Mann, C. Tsallis (Eds.),Nonextensive Entropy – Interdisciplinary Applications (Oxford University Press, New York, 2004)
- 27.
C. Tsallis,Introduction to Nonextensive Statistical Mechanics – Approaching a Complex World (Springer, New York, 2009)
- 28.
C. Tsallis, Contemp. Phys. 55, 179 (2014)
Author information
Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Christodoulidi, H., Bountis, A. & Drossos, L. The effect of long-range interactions on the dynamics and statistics of 1D Hamiltonian lattices with on-site potential. Eur. Phys. J. Spec. Top. 227, 563–573 (2018). https://doi.org/10.1140/epjst/e2018-00003-9
Received:
Published:
Issue Date: