Skip to main content
Log in

Modelling of fractal flow in dual media with fractional differentiation with power and generalized Mittag-Leffler laws kernels

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The paper has considered the fractal flow in a dual media with fractal properties, where the media could be elastic, heterogeneous and visco-elastic. We argued that, the fractal flow within a geological formation with elastic property cannot be accurately described with the concept of differentiation with local operator, as this operator is unable to include into mathematical formulation the effect of elasticity. Thus to include into mathematical formula the observed facts, we have modified the model by replacing the local derivative with the non-local operator with power. A more complex problem was considered where the geological formation is considered to have visco-elastic and heterogeneity properties. We argued that, the flow within a matrix rock with these two properties cannot either be described with local derivative nor a non-local derivative with power law. In this case two non-local operators were considered, an operator with Mittag-Leffler kernel and Mittag-Leffler-Power law kernel [F. Ali et al., J. Magn. Magn. Mater. 423, 327 (2017); F. Ali et al., Eur. Phys. J. Plus 131, 310 (2016); F. Ali et al., Eur. Phys. J. Plus 131, 377 (2016); F. Ali et al., Nonlinear Sci. Lett. A 8, 101 (2017); N.A. Sheikh et al., Neural Comput. Appl. (2016) https://doi.org/10.1007/s00521-016-2815-5]. For each model, a detailed study of existence and uniqueness of the system solutions was presented using the fixed point theorem. We solved numerically each model using a more acculturate numerical scheme known as Upwind. Some numerical simulations are presented to underpin the effect of the suggested fractional differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.V. Theis, Eos Trans. Am. Geophys. Union 16, 519 (1935)

    Article  Google Scholar 

  2. M.S. Hantush, J. Hydraul. Div. 87, 83 (1961)

    Google Scholar 

  3. M.S. Hantush, J. Hydraul. Div. 87, 171 (1961)

    Google Scholar 

  4. H.H. Cooper, C.E. Jacob, Eos Trans. Am. Geophys. Union 27, 526 (1946)

    Article  Google Scholar 

  5. J.E. Warren, P.J. Root, SPE J. 3, 245 (1963)

    Article  Google Scholar 

  6. G.E. Barenblatt, I.P. Zheltov, I.N. Kochina, J. Appl. Math. Mech. 24, 1286 (1960)

    Article  Google Scholar 

  7. K. Serra, A.C. Reynolds, R. Raghavan, J. Pet. Technol. 35, 2271 (1983)

    Article  Google Scholar 

  8. A. de Swaan O, SPE J. 16, 117 (1976)

    Article  Google Scholar 

  9. D. Bourdet et al., New Type Curves Aid Analysis of Fissured Zone Well Tests (World Oil, 1984)

  10. B. O’Shaughnessy, I. Procaccia, Phys. Rev. A 32, 3073 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Leveinen, J. Hydrol. 234, 116 (2000)

    Article  ADS  Google Scholar 

  12. T. Hirata, Pure Appl. Geophys. 121, 157 (1989)

    Article  ADS  Google Scholar 

  13. K.B. Oldham, J. Spanier, in The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order, Mathematics in Science and Engineering (Academic Press, 1974), Vol. V

  14. B. Ross, A brief history and exposition of the fundamental theory of fractional calculus, in Fractional Calculus and Its Applications, Lecture Notes in Mathematics (1975), Vol. 457, pp. 1–36

  15. L. Debnath. Int. J. Math. Educ. Sci. Technol. 35, 487 (2004)

    Article  Google Scholar 

  16. B.S.T. Alkahtani, Chaos Solitons Fractals 89, 547 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. A. Atangana, B. Dumitru, Therm. Sci. 20, 763 (2016)

    Article  Google Scholar 

  18. R. Courant, E. Isaacson, M. Rees, Commun. Pure Appl. Math. 5, 243 (1952)

    Article  Google Scholar 

  19. H.K. Versteeg, W. Malalasekera, in An Introduction to Computational Fluid Dynamics (1995), Chap. 5, p. 104

  20. H.K. Versteeg, W. Malalasekera, in An Introduction to Computational Fluid Dynamics (1995), Chap. 5, p. 105

  21. F. Ali, N.A. Sheikh, I. Khan, M. Saqib, J. Magn. Magn. Mater. 423, 327 (2017)

    Article  ADS  Google Scholar 

  22. F. Ali, S.A.A. Jan, I. Khan, M. Gohar, N.A. Sheikh, Eur. Phys. J. Plus 131, 310 (2016)

    Article  Google Scholar 

  23. F. Ali, M. Saqib, I. Khan, N.A. Sheikh, Eur. Phys. J. Plus 131, 377 (2016)

    Article  Google Scholar 

  24. F. Ali, N.A. Sheikh, M. Saqib, A. Khan, Nonlinear Sci. Lett. A 8, 101 (2017)

    Google Scholar 

  25. N.A. Sheikh, F. Ali, I. Khan, M. Saqib, Neural Comput. Appl. (2016) https://doi.org/10.1007/s00521-016-2815-5

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdon Atangana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahokpossi, D.P., Atangana, A. & Vermeulen, D.P. Modelling of fractal flow in dual media with fractional differentiation with power and generalized Mittag-Leffler laws kernels. Eur. Phys. J. Spec. Top. 226, 3705–3727 (2017). https://doi.org/10.1140/epjst/e2018-00002-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2018-00002-4

Navigation