Skip to main content
Log in

Nonlinear response and avalanche behavior in metallic glasses

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The response to different stress amplitudes at temperatures below the glass transition temperature is analyzed by mechanical oscillatory excitation of Pd40Ni40P20 metallic glass samples in single cantilever bending geometry. While low amplitude oscillatory excitations are commonly used in mechanical spectroscopy to probe the relaxation spectrum, in this work the response to comparably high amplitudes is investigated. The strain response of the material is well below the critical yield stress even for highest stress amplitudes, implying the expectation of a linear relation between stress and strain according to Hooke’s Law. However, a deviation from the linear behavior is evident, which is analyzed in terms of temperature dependence and influence of the applied stress amplitude by two different approaches of evaluation. The nonlinear approach is based on a nonlinear expansion of the stress-strain-relation, assuming an intrinsic nonlinear character of the shear or elastic modulus. The degree of nonlinearity is extracted by a period-by-period Fourier-analysis and connected to nonlinear coefficients, describing the intensity of nonlinearity at the fundamental and higher harmonic frequencies. The characteristic timescale to adapt to a significant change in stress amplitude in terms of a recovery timescale to a steady state value is connected to the structural relaxation time of the material, suggesting a connection between the observed nonlinearity and primary relaxation processes. The second approach of evaluation is termed the incremental analysis and relates the observed response behavior to avalanches, which occur due to the activation and correlation of local microstructural rearrangements. These rearrangements are connected with shear transformation zones and correspond to localized plastic events, which are superimposed on the linear response behavior of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965)

    Article  ADS  Google Scholar 

  2. J.S. Harmon, M.D. Demetriou, W.L. Johnson, K. Samwer, Phys. Rev. Lett. 99, 135502 (2007)

    Article  ADS  Google Scholar 

  3. G.P. Johari, M. Goldstein, J. Chem. Phys. 53, 2372 (1970)

    Article  ADS  Google Scholar 

  4. C. Maloney, A. Lemaître, Phys. Rev. Lett. 93, 016001 (2004)

    Article  ADS  Google Scholar 

  5. A. Argon, Acta Metallurgica 27, 47 (1979)

    Article  Google Scholar 

  6. A. Argon, L.T. Shi, Acta Metallurgica 31, 499 (1983)

    Article  Google Scholar 

  7. L. Shi, A. Argon, H. Kuo, Scripta Metallurgica 17, 1015 (1983)

    Article  Google Scholar 

  8. J.D. Eshelby, The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. London A 241, 376 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. J. Eshelby, The elastic field outside an ellipsoidal inclusion, Proc. R. Soc. London A 252, 561 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. W. Johnson, K. Samwer, Phys. Rev. Lett. 95, 195501 (2005)

    Article  ADS  Google Scholar 

  11. M. Zink, K. Samwer, W.L. Johnson, S.G. Mayr, Phys. Rev. B 74, 012201 (2006)

    Article  ADS  Google Scholar 

  12. W.L. Johnson, M.D. Demetriou, J.S. Harmon, M.L. Lind, K. Samwer, MRS bulletin 32, 644 (2007)

    Article  Google Scholar 

  13. L. Berthier, J.L. Barrat, Phys. Rev. Lett. 89, 095702 (2002)

    Article  ADS  Google Scholar 

  14. P. Guan, M. Chen, T. Egami, Phys. Rev. Lett. 104, 205701 (2010)

    Article  ADS  Google Scholar 

  15. T.C. Hufnagel, C.A. Schuh, M.L. Falk, Acta Mater. 109, 375 (2016)

    Article  Google Scholar 

  16. O. Perković, K. Dahmen, J.P. Sethna, Phys. Rev. Lett. 75, 4528 (1995)

    Article  ADS  Google Scholar 

  17. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)

    Article  ADS  Google Scholar 

  18. B. Sun, S. Pauly, J. Tan, M. Stoica, W.H. Wang, U. Kühn, J. Eckert, Acta Mater. 60, 4160 (2012)

    Article  Google Scholar 

  19. C. Herrero-Gómez, K. Samwer, Sci. Rep. 6, 33503 (2016)

    Article  ADS  Google Scholar 

  20. A.E. Lagogianni (private Communications) (2017)

  21. J.O. Krisponeit, S. Pitikaris, K.E. Avila, S. Küchemann, A. Krüger, K. Samwer, Nature Commun. 5, 3616 (2013)

    Google Scholar 

  22. A.K. Dubey, I. Procaccia, C.A.B.Z. Shor, M. Singh, Phys. Rev. Lett. 116, 085502 (2016)

    Article  ADS  Google Scholar 

  23. M. Born, K. Huang, Dynamical theory of crystal lattices (Clarendon press, 1954)

  24. Y. Cohen, I. Procaccia, Europhys. Lett. 99, 46002 (2012)

    Article  ADS  Google Scholar 

  25. A. Travesset, R.A. White, K.A. Dahmen, Phys. Rev. B 66, 024430 (2002)

    Article  ADS  Google Scholar 

  26. R. Richert, S. Weinstein, Phys. Rev. Lett. 97, 095703 (2006)

    Article  ADS  Google Scholar 

  27. B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Science 274, 752 (1996)

    Article  ADS  Google Scholar 

  28. W. Huang, R. Richert, J. Phys. Chem. B 112, 9909 (2008)

    Article  Google Scholar 

  29. W. Huang, R. Richert, J. Chem. Phys. 130, 154508 (2009)

    Article  ADS  Google Scholar 

  30. C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)

    Article  ADS  Google Scholar 

  31. J.P. Bouchaud, G. Biroli, Phys. Rev. B 72, 064204 (2005)

    Article  ADS  Google Scholar 

  32. C. Brun, F. Ladieu, D. l’Hôte, M. Tarzia, G. Biroli, J.P. Bouchaud, Phys. Rev. B 84, 104204 (2011)

    Article  ADS  Google Scholar 

  33. T. Bauer, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 111, 225702 (2013)

    Article  ADS  Google Scholar 

  34. S. Albert, T. Bauer, M. Michl, G. Biroli, J.P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Science 352, 1308 (2016)

    Article  ADS  Google Scholar 

  35. R. Richert, J. Chem. Phys. 144, 114501 (2016)

    Article  ADS  Google Scholar 

  36. A. Kahl, T. Koeppe, D. Bedorf, R. Richert, M. Lind, M. Demetriou, W. Johnson, W. Arnold, K. Samwer, Appl. Phys. Lett. 95, 201903 (2009)

    Article  ADS  Google Scholar 

  37. L. Hu, X. Bian, W. Wang, G. Liu, Y. Jia, J. Phys. Chem. B 109, 13737 (2005)

    Article  Google Scholar 

  38. V.N. Novikov, A.P. Sokolov, Phys. Rev. B 74, 064203 (2006)

    Article  ADS  Google Scholar 

  39. G. Wilde, G.P. Görler, R. Willnecker, H.J. Fecht, J. Appl. Phys. 87, 1141 (2000)

    Article  ADS  Google Scholar 

  40. E.F. Lambson, W.A. Lambson, J.E. Macdonald, M.R.J. Gibbs, G.A. Saunders, D. Turnbull, Phys. Rev. B 33, 2380 (1986)

    Article  ADS  Google Scholar 

  41. K. Schröter, G. Wilde, R. Willnecker, M. Weiss, K. Samwer, E. Donth, Eur. Phys. J. B 5, 1 (1998)

    Article  ADS  Google Scholar 

  42. S. Finkhäuser, Ph.D. thesis, Georg-August-Universität Göttingen, 2017, http://hdl.handle.net/11858/00-1735-0000-0023-3DDB-B

  43. B. Riechers, Ph.D. thesis, Georg-August-Universität Göttingen, 2017

  44. R. deL. Kronig, J. Opt. Soc. Am. 12, 547 (1926)

    Article  ADS  Google Scholar 

  45. H.A. Kramers, La diffusion de la lumiere par les atomes (1927)

  46. T. Pritz, J. Sound Vibration 228, 1145 (1999)

    Article  ADS  Google Scholar 

  47. DMA 8000 - Service Manual (and Software program), Perkin Elmer (2007)

  48. R. Richert, Phys. Rev. E 88, 062313 (2013)

    Article  ADS  Google Scholar 

  49. R. Richert (private Communications) (2014)

  50. A.R. Young-Gonzales, S. Samanta, R. Richert, J. Chem. Phys. 143, 104504 (2015)

    Article  ADS  Google Scholar 

  51. M.S. Beevers, D.A. Elliott, G. Williams, J. Chem. Soc. Faraday Transactions 2: Mol. Chem. Phys. 76, 112 (1980)

    Article  Google Scholar 

  52. P. Lunkenheimer, M. Michl, T. Bauer, A. Loidl, arXiv:1704.07348 (2017)

  53. S.R. Elliott, Physics of Amorphous Materials (Longman, 1983)

  54. S. Weinstein, R. Richert, J. Phys.: Condens. Matter 19, 205128 (2007)

    ADS  Google Scholar 

  55. R. Richert (private Communications) (2014)

  56. H.B. Yu, R. Richert, R. Maaß, K. Samwer, Nat. Commun. 6, 7179 (2015)

    Article  Google Scholar 

  57. M. Schwabe, D. Bedorf, K. Samwer, Eur. Phys. J. E 34, 91 (2011)

    Article  Google Scholar 

  58. D. Polk, D. Turnbull, Acta Metall. 20, 493 (1972)

    Article  Google Scholar 

  59. P.K. Jaiswal, I. Procaccia, C. Rainone, M. Singh, Phys. Rev. Lett. 116, 085501 (2016)

    Article  ADS  Google Scholar 

  60. B. Riechers, K. Samwer, R. Richert, J. Chem. Phys. 142, 154504 (2015)

    Article  ADS  Google Scholar 

  61. M. Tsamados, A. Tanguy, F. Léonforte, J.L. Barrat, Eur. Phys. J. E 26, 283 (2008)

    Article  Google Scholar 

  62. A. Greer, Y. Cheng, E. Ma, Mater. Sci. Eng. R 74, 71 (2013)

    Article  Google Scholar 

  63. R.A. White, K.A. Dahmen, Phys. Rev. Lett. 91, 085702 (2003)

    Article  ADS  Google Scholar 

  64. H.E. Stanley, Rev. Mod. Phys. 71, 358 (1999)

    Article  Google Scholar 

  65. G. Durin, S. Zapperi, Phys. Rev. Lett. 84, 4705 (2000)

    Article  ADS  Google Scholar 

  66. B. Tadić, Phys. Rev. Lett. 77, 3843 (1996)

    Article  ADS  Google Scholar 

  67. P. Leishangthem, A.D. Parmar, S. Sastry, Nature Commun. 8, 14653 (2017)

    Article  ADS  Google Scholar 

  68. A. Tanguy, F. Leonforte, J.L. Barrat, Eur. Phys. J. E 20, 355 (2006)

    Article  Google Scholar 

  69. P. Schall, D.A. Weitz, F. Spaepen, Science 318, 1895 (2007)

    Article  ADS  Google Scholar 

  70. V. Chikkadi, G. Wegdam, D. Bonn, B. Nienhuis, P. Schall, Phys. Rev. Lett. 107, 198303 (2011)

    Article  ADS  Google Scholar 

  71. V. Chikkadi, S. Mandal, B. Nienhuis, D. Raabe, F. Varnik, P. Schall, Europhys. Lett. 100, 56001 (2012)

    Article  ADS  Google Scholar 

  72. R. Richert (private communications) (2015)

  73. P. Lunkenheimer, A. Loidl (private communications) (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Samwer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riechers, B., Samwer, K. Nonlinear response and avalanche behavior in metallic glasses. Eur. Phys. J. Spec. Top. 226, 2997–3021 (2017). https://doi.org/10.1140/epjst/e2017-70087-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70087-9

Navigation