The European Physical Journal Special Topics

, Volume 226, Issue 14, pp 3061–3078 | Cite as

Nonlinear response from the perspective of energy landscapes and beyond

  • Andreas Heuer
  • Carsten F. E. Schroer
  • Diddo Diddens
  • Christian Rehwald
  • Markus Blank-Burian
Review
Part of the following topical collections:
  1. Nonlinear Response to Probe Vitrification

Abstract

The paper discusses the nonlinear response of disordered systems. In particular we show how the nonlinear response can be interpreted in terms of properties of the potential energy landscape. It is shown why the use of relatively small systems is very helpful for this approach. For a standard model system we check which system sizes are particular suited. In case of the driving of a single particle via an external force the concept of an effective temperature helps to scale the force dependence for different temperature on a single master curve. In all cases the mobility increases with increasing external force. These results are compared with a stochastic process described by a 1d Langevin equation where a similar scaling is observed. Furthermore it is shown that for different classes of disordered systems the mobility can also decrease with increasing force. The results can be related to the properties of the chosen potential energy landscape. Finally, results for the crossover from the linear to the nonlinear conductivity of ionic liquids are presented, inspired by recent experimental results in the Roling group. Apart from a standard imidazolium-based ionic liquid we study a system which is characterized by a low conductivity as compared to other ionic liquids and very small nonlinear effects. We show via a real space structural analysis that for this system a particularly strong pair formation is observed and that the strength of the pair formation is insensitive to the application of strong electric fields. Consequences of this observation are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.G. Debenedetti, Metastable Liquids (Princeton University Press, 1997)Google Scholar
  2. 2.
    M.D. Ediger, J. Phys. Chem. 100, 13200 (1996)CrossRefGoogle Scholar
  3. 3.
    P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Wales, Energy landscapes (Cambridge University Press, 2003)Google Scholar
  5. 5.
    F. Sciortino, J. Stat. Mech. 2005, P05015 (2005)CrossRefGoogle Scholar
  6. 6.
    J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    T.A. Waigh, Rep. Prog. Phys. 68, 685 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    P. Cicuta, A.M. Donald, Soft Matter 3, 1449 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    J.O. Isard, J. Non-Cryst. Solids 202, 137 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    S. Murugavel, B. Roling, J. Non-Cryst. Solids 351, 2819 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    M. Goldstein, J. Chem. Phys. 51, 3728 (1969)ADSCrossRefGoogle Scholar
  12. 12.
    A. Heuer, J. Phys.: Condens. Matter 20, 373101 (2008)Google Scholar
  13. 13.
    M.D. Ediger, P. Harrowell, J. Chem. Phys. 137, 080901 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    S. Sastry, P.G. Debenedetti, F.H. Stillinger, Nature 393, 554 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    B. Doliwa, A. Heuer, J. Phys. C: Cond. Mat. 15, S849 (2003)ADSGoogle Scholar
  16. 16.
    M. Vogel, B. Doliwa, A. Heuer, S.C. Glotzer, J. Chem. Phys. 120, 4404 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    W. Kob, H.C. Andersen, Phys. Rev. E 51, 4626 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    S. Büchner, A. Heuer, Phys. Rev. E 60, 6507 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    C. Rehwald, O. Rubner, A. Heuer, Phys. Rev. Lett. 105, 117801 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    B. Dünweg, K. Kremer, J. Chem. Phys. 99, 6983 (1993)ADSCrossRefGoogle Scholar
  21. 21.
    T.F. Middleton, J. Hernández-Rojas, P.N. Mortenson, D.J. Wales, Phys. Rev. B 64, 184201 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    P. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    G.P. Shrivastav, P. Chaudhuri, J. Horbach, Phys. Rev. E 94, 042605 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    D. Fiocco, G. Foffi, S. Sastry, Phys. Rev. E 88, 020301(R) (2013)ADSCrossRefGoogle Scholar
  25. 25.
    F.H. Stillinger, Science 267, 1935 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    B. Doliwa, A. Heuer, Phys. Rev. E 67, 030501 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    C. Monthus, J.P. Bouchaud, J. Phys. A: Math. Gen. 29, 3847 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    W. Kob, F. Sciortino, P. Tartaglia, Europhys. Lett. 49, 590 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    P. Sollich, F. Lequeux, P. Hebraud, M.E. Cates, Phys. Rev. Lett. 78, 2020 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    A. Nicolas, K. Martens, J.-L. Barrat, Europhys. Lett. 107, 44003 (2014)ADSCrossRefGoogle Scholar
  31. 31.
    T.G. Mason, D.A. Weitz, Phys. Rev. Lett. 74, 1250 (1995)ADSCrossRefGoogle Scholar
  32. 32.
    A. Einstein, Ann. Phys. 322, 549 (1905)CrossRefGoogle Scholar
  33. 33.
    C.F.E. Schroer, A. Heuer, J. Chem. Phys. 143, 224501 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    A. Meyer, A. Marshall, B.G. Bush, E.M. Furst, J. Rheol. 50, 77 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    L.G. Wilson, A.W. Harrison, A.B. Schofield, J. Arlt, W.C.K. Poon, J. Phys. Chem. B 113, 3806 (2009)CrossRefGoogle Scholar
  36. 36.
    P. Habdas, D. Schaar, A.C. Levitt, E.R. Weeks, Europhys. Lett. 67, 477 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    J.P.G.R.L. Jack, D. Kelsey, D. Chandler, Phys. Rev. E 78, 011506 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Takehara, S. Fujimoto, K. Okumura, Europhys. Lett. 92, 44003 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    S.R. Williams, D.J. Evans, Phys. Rev. Lett. 96, 015701 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    R.N. Zia, J.F. Brady, J. Rheol. 57, 457 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    T.M. Squires, J.F. Brady, Phys. Fluids 17, 073101 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    I. Gazuz, M. Puertas, T. Voigtmann, M. Fuchs, Phys. Rev. Lett. 102, 248302 (2009)ADSCrossRefGoogle Scholar
  43. 43.
    M.V. Gnann, I. Gazuz, A.M. Puertas, M. Fuchs, T. Voigtmann, Soft Matter 7, 1390 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    C.J. Harrer, A.M. Puertas, T. Voigtmann, M. Fuchs, Z. Phys. Chem. 226, 779795 (2012)CrossRefGoogle Scholar
  45. 45.
    C.J. Harrer, D. Winter, J. Horbach, M. Fuchs, T. Voigtmann, J. Phys.: Condens. Matter 24, 464105 (2012)ADSGoogle Scholar
  46. 46.
    D. Winter, J. Horbach, P. Virnau, K. Binder, Phys. Rev. Lett. 108, 028303 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    D. Winter, J. Horbach, J. Chem. Phys. 138, 12A512 (2013)CrossRefGoogle Scholar
  48. 48.
    C.F.E. Schroer, A. Heuer, Phys. Rev. Lett. 110, 067801 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    C. Reichhardt, C.O. Reichhardt, Phys. Rev. E 74, 011403 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    I. Ladadwa, A. Heuer, Phys. Rev. E 87, 012302 (2013)ADSCrossRefGoogle Scholar
  51. 51.
    I. Santamaria-Holek, A. Perez-Madrid, J. Phys. Chem. B 115, 9439 (2011)CrossRefGoogle Scholar
  52. 52.
    I. Santamaria-Holek, A. Perez-Madrid, J. Chem. Phys. 145, 134905 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    E. Vanden-Eijnden, G. Ciccotti, Chem. Phys. Lett. 429, 310 (2006)ADSCrossRefGoogle Scholar
  54. 54.
    H.A. Kramers, Physica 7, 284 (1940)ADSMathSciNetCrossRefGoogle Scholar
  55. 55.
    P. Hanggi, J. Stat. Phys. 42, 105 (1986)ADSCrossRefGoogle Scholar
  56. 56.
    A.R. Genreith-Schriever, R.A. De Souza, Phys. Rev. B 94, 224304 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    H. Lammert, A. Heuer, Phys. Rev. Lett. 104, 125901 (2010)ADSCrossRefGoogle Scholar
  58. 58.
    M. Kunow, A. Heuer, J. Chem. Phys. 124, 214703 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    S. Röthel, R. Friedrich, L. Lühning, A. Heuer, Z. Phys. Chem. 224, 1855 (2010)CrossRefGoogle Scholar
  60. 60.
    A. Heuer, L. Lühning, J. Chem. Phys. 140, 094508 (2014)ADSCrossRefGoogle Scholar
  61. 61.
    S. Leitmann, T. Franosch, Phys. Rev. Lett. 111, 190603 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    A. Heuer, S. Murugavel, B. Roling, Phys. Rev. B 72, 174304 (2005)ADSCrossRefGoogle Scholar
  63. 63.
    L.N. Patro, O. Burghaus, B. Roling, J. Chem. Phys. 142, 064505 (2015)ADSCrossRefGoogle Scholar
  64. 64.
    L.N. Patro, O. Burghaus, B. Roling, Phys. Rev. Lett. 116, 185901 (2016)ADSCrossRefGoogle Scholar
  65. 65.
    P.C. Howlett, D.R. MacFarlane, A.F. Hollenkam, Electrochem. Solid State Lett. 7, A97 (2004)CrossRefGoogle Scholar
  66. 66.
    N. Schweikert, A. Hofmann, M. Schulz, M. Scheuermann, S.T. Boles, T. Hanemann, H. Hahn, S. Indris, J. Power Sources 228, 237 (2013)CrossRefGoogle Scholar
  67. 67.
    H.K. Kashyap, H.V.R. Annapureddy, F.O. Raineri, C.J. Margulis, J. Phys. Chem. B 115, 13212 (2011)CrossRefGoogle Scholar
  68. 68.
    S. Plimpton, J. Comput. Phys. 117, 1 (1995)ADSCrossRefGoogle Scholar
  69. 69.
    S. Plimpton, P. Crozier, A. Thompson, LAMMPS – Large-Scale Atomic/Molecular Massively Parallel Simulator, http://lammps.sandia.gov, Sandia National Laboratories
  70. 70.
    S. Plimpton, P. Crozier, A. Thompson, Sandia National Laboratories 18 (2007)Google Scholar
  71. 71.
    J.N.C. Lopes, J. Deschamps, A.A.H. Pádua, J. Phys. Chem. B 108, 2038 (2004)CrossRefGoogle Scholar
  72. 72.
    J.N.C. Lopes, A.A.H. Pádua, J. Phys. Chem. B 108, 16893 (2004)CrossRefGoogle Scholar
  73. 73.
    J.N.C. Lopes, A.A.H. Pádua, J. Phys. Chem. B 110, 19586 (2006)CrossRefGoogle Scholar
  74. 74.
    L. Onsager, J. Chem. Phys. 2, 599 (1934)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Andreas Heuer
    • 1
    • 4
    • 5
  • Carsten F. E. Schroer
    • 2
  • Diddo Diddens
    • 3
  • Christian Rehwald
    • 1
  • Markus Blank-Burian
    • 1
  1. 1.University of Muenster, Institute for Physical ChemistryMuensterGermany
  2. 2.University of Groningen, Groningen Biomolecular Sciences and Biotechnology InstituteAG GroningenThe Netherlands
  3. 3.Helmholtz Institute Muenster (HI MS), Ionics in Energy Storage, Forschungszentrum Juelich GmbHMuensterGermany
  4. 4.Center of Nonlinear Science (CeNoS), University of MuensterMuensterGermany
  5. 5.Center for Multiscale Theory and Computation (CMTC), University of MuensterMuensterGermany

Personalised recommendations