The European Physical Journal Special Topics

, Volume 226, Issue 14, pp 3039–3060 | Cite as

Nonlinear mechanical response of supercooled melts under applied forces

  • Heliana Cárdenas
  • Fabian Frahsa
  • Sebastian Fritschi
  • Alexandre Nicolas
  • Simon Papenkort
  • Thomas Voigtmann
  • Matthias Fuchs
Regular Article
Part of the following topical collections:
  1. Nonlinear Response to Probe Vitrification

Abstract

We review recent progress on a microscopic theoretical approach to describe the nonlinear response of glass-forming colloidal dispersions under strong external forcing leading to homogeneous and inhomogeneous flow. Using mode-coupling theory (MCT), constitutive equations for the rheology of viscoelastic shear-thinning fluids are obtained. These are, in suitably simplified form, employed in continuum fluid dynamics, solved by a hybrid-Lattice Boltzmann (LB) algorithm that was developed to deal with long-lasting memory effects. The combined microscopic theoretical and mesoscopic numerical approach captures a number of phenomena far from equilibrium, including the yielding of metastable states, process-dependent mechanical properties, and inhomogeneous pressure-driven channel flow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.C. Maxwell, Philos. Trans. R. Soc. London 157, 49 (1867)CrossRefGoogle Scholar
  2. 2.
    E. Leutheusser, Phys. Rev. A 29, 2765 (1984)ADSCrossRefGoogle Scholar
  3. 3.
    U. Bengtzelius, W. Götze, A. Sjölander, J. Phys. C: Solid State Phys. 17, 5915 (1984)ADSCrossRefGoogle Scholar
  4. 4.
    W. Götze, Complex Dynamics of Glass-Forming Liquids, A Mode-Coupling Theory (Oxford University Press, 2009)Google Scholar
  5. 5.
    G.L. Hunter, E.R. Weeks, Rep. Prog. Phys. 75, 066501 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    R.G. Larson, The Structure and Rheology of Complex Fluids (Oxford University Press, New York, 1999)Google Scholar
  7. 7.
    K. Kawasaki, J.D. Gunton, Phys. Rev. A 8, 2048 (1973)ADSCrossRefGoogle Scholar
  8. 8.
    J.M. Brader, M.E. Cates, M. Fuchs, Phys. Rev. E 86, 021403 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    K. Suzuki, H. Hayakawa, Phys. Rev. E 87, 012304 (2013)ADSCrossRefGoogle Scholar
  10. 10.
    W.T. Kranz, M. Sperl, A. Zippelius, Phys. Rev. E 87, 022207 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    Th. Voigtmann, Curr. Opin. Colloid Interf. Sci. 19, 549 (2014)CrossRefGoogle Scholar
  12. 12.
    A.A. Aerov, M. Krüger, J. Chem. Phys. 140, 094701 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    A.A. Aerov, M. Krüger, Phys. Rev. E 92, 042301 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    P. Hopkins, A. Fortini, A.J. Archer, M. Schmidt, J. Chem. Phys. 133, 224505 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    P. Krinninger, M. Schmidt, J.M. Brader, Phys. Rev. Lett. 117, 208003 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    J.P. Bouchaud, G. Biroli, Phys. Rev. B 6, 064204 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    M. Tarzia, G. Biroli, A. Lefèvre, J.P. Bouchaud, J. Chem. Phys. 132, 054501 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    G. Szamel, E. Flenner, Phys. Rev. Lett. 107, 105505 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    H. Yoshino, F. Zamponi, Phys. Rev. E 90, 022302 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    P. Urbani, F. Zamponi, Phys. Rev. Lett. 118, 038001 (2017)ADSCrossRefGoogle Scholar
  21. 21.
    I. Goldhirsch, C. Goldenberg, Eur. Phys. Jour. E 9, 245 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd edn. (Academic Press, London, 1986)Google Scholar
  23. 23.
    A. Nicolas, M. Fuchs, J. Non-Newt. Fluid Mech. 228, 64 (2016)CrossRefGoogle Scholar
  24. 24.
    D.J. Evans, G. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Cambridge University Press, London, 2008)Google Scholar
  25. 25.
    H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer-Verlag, Berlin, 1989)Google Scholar
  26. 26.
    M. Priya, Th. Voigtmann, J. Rheol. 58, 1163 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    C.P. Amann, M. Fuchs, J. Rheol. 58, 1191 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    C.P. Amann, M. Siebenbürger, M. Ballauff, M. Fuchs, J. Phys.: Condens. Matter 27, 194121 (2015)ADSGoogle Scholar
  29. 29.
    C.P. Amann, D. Denisov, M.T. Dang, B. Struth, P. Schall, M. Fuchs, J. Chem. Phys. 143, 034505 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    N. Koumakis, M. Laurati, A.R. Jacob, K.J. Mutch, A. Abdellali, A.B. Schofield, S.U. Egelhaaf, J.F. Brady, G. Petekidis, J. Rheol. 60, 603 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    A.R. Jacob, A.S. Poulos, S. Kim, J. Vermant, G. Petekidis, Phys. Rev. Lett. 115, 218301 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    M. Siebenbürger, M. Ballauff, Th. Voigtmann, Phys. Rev. Lett. 108, 255701 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    F. Frahsa, Ph.D. thesis, University of Konstanz 2015, http://nbn-resolving.de/urn:nbn:de:bsz:xx
  34. 34.
    F. Frahsa, A.K. Bhattacharjee, J. Horbach, M. Fuchs, T. Voigtmann, J. Chem. Phys. 138, 12A513 (2013)CrossRefGoogle Scholar
  35. 35.
    M. Wang, J.F. Brady, Phys. Rev. Lett. 115, 158301 (2015)ADSCrossRefGoogle Scholar
  36. 36.
    T. Sentjabrskaja, P. Chaudhuri, M. Hermes, W. Poon, J. Horbach, S. Egelhaaf, M. Laurati, Sci. Rep. 5, 11884 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    P. Chaudhuri, J. Horbach, Phys. Rev. E 88, 040301 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    G.P. Shrivastav, P. Chaudhuri, J. Horbach, J. Rheol. 60, 835 (2016)ADSCrossRefGoogle Scholar
  39. 39.
    H. Jin, K. Kang, K.H. Ahn, J.K.G. Dhont, Soft Matter 10, 9470 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    S. Mandal, M. Gross, D. Raabe, F. Varnik, Phys. Rev. Lett. 108, 098301 (2012)ADSCrossRefGoogle Scholar
  41. 41.
    A.M. Puertas, Th. Voigtmann, J. Phys.: Condens. Matter 26, 243101 (2014)Google Scholar
  42. 42.
    H. Wagner, D. Bedorf, S. Küchemann, M. Schwabe, B. Zhang, W. Arnold, K. Samwer, Nat. Mat. 10, 439 (2011)CrossRefGoogle Scholar
  43. 43.
    A. Heuer, C.F.E. Schroer, D. Diddens, C. Rehwald, M. Blank-Burian, Eur. Phys. J. Special Topics 226, 3061 (2017)CrossRefGoogle Scholar
  44. 44.
    M. Sperl, A. Zippelius, Eur. Phys. J. Special Topics 226, 3079 (2017)CrossRefGoogle Scholar
  45. 45.
    S. Mandal, M. Spanner-Denzer, S. Leitmann, T. Franosch, Eur. Phys. J. Special Topics 226, 3129 (2017)CrossRefGoogle Scholar
  46. 46.
    I. Gazuz, A.M. Puertas, Th. Voigtmann, M. Fuchs, Phys. Rev. Lett. 102, 248302 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    I. Gazuz, M. Fuchs, Phys. Rev. E 87, 032304 (2013)ADSCrossRefGoogle Scholar
  48. 48.
    C. Reichhardt, C.J.O. Reichhardt, Rep. Prog. Phys. 80, 026501 (2017)ADSCrossRefGoogle Scholar
  49. 49.
    S. Leitmann, T. Franosch, Phys. Rev. Lett. 118, 018001 (2017)ADSCrossRefGoogle Scholar
  50. 50.
    M. Gruber, G. Abade, A. Puertas, M. Fuchs, Phys. Rev. E 94, 042602 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    T. Theenhaus, R. Schilling, A. Latz, M. Letz, Phys. Rev. E 64, 051505 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    S. Lang, V. Boţan, M. Oettel, D. Hajnal, T. Franosch, R. Schilling, Phys. Rev. Lett. 105, 125701 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    S.K. Schnyder, F. Höfling, T. Franosch, Th. Voigtmann, J. Phys.: Condens. Matter 23, 234121 (2011)ADSGoogle Scholar
  54. 54.
    H. Yoshino, M. Mézard, Phys. Rev. Lett. 105, 015504 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    A. Lemaître, Phys. Rev. Lett. 113, 245702 (2014)ADSCrossRefGoogle Scholar
  56. 56.
    J.P. Wittmer, H. Xu, J. Baschnagel, Phys. Rev. E 91, 022107 (2015)ADSMathSciNetCrossRefGoogle Scholar
  57. 57.
    S. Saw, P. Harrowell, Phys. Rev. Lett. 116, 137801 (2016)ADSCrossRefGoogle Scholar
  58. 58.
    E. Flenner, G. Szamel, Phys. Rev. Lett. 114, 025501 (2015)ADSCrossRefGoogle Scholar
  59. 59.
    R. Ahluwalia, S. Das, Phys. Rev. E 57, 5771 (1998)ADSCrossRefGoogle Scholar
  60. 60.
    D.H. Torchinsky, J.A. Johnson, K.A. Nelson, J. Chem. Phys. 136, 174509 (2012)ADSCrossRefGoogle Scholar
  61. 61.
    J. Chattoraj, A. Lemaître, Phys. Rev. Lett. 111, 066001 (2013)ADSCrossRefGoogle Scholar
  62. 62.
    J.C. Dyre, Rev. Mod. Phys. 78, 953 (2006)ADSCrossRefGoogle Scholar
  63. 63.
    B. Illing, S. Fritschi, D. Hajnal, C.L. Klix, P. Keim, M. Fuchs, Phys. Rev. Lett. 117, 208002 (2016)ADSCrossRefGoogle Scholar
  64. 64.
    A. Furukawa, H. Tanaka, Phys. Rev. E 84, 061503 (2011)ADSCrossRefGoogle Scholar
  65. 65.
    R.M. Puscasu, B.D. Todd, P.J. Daivis, J.S. Hansen, J. Chem. Phys. 133, 144907 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    H.L. Peng, Th. Voigtmann, Phys. Rev. E 94, 042612 (2016)ADSCrossRefGoogle Scholar
  67. 67.
    S. Chowdhury, S. Abraham, T. Hudson, P. Harrowell, J. Chem. Phys. 144, 124508 (2016)ADSCrossRefGoogle Scholar
  68. 68.
    M. Maier, A. Zippelius, M. Fuchs, Phys. Rev., submittedGoogle Scholar
  69. 69.
    A. Nicolas, J. Rottler, J.L. Barrat, Eur. Phys. J. E 37, 50 (2014)CrossRefGoogle Scholar
  70. 70.
    E.E. Ferrero, K. Martens, J.L. Barrat, Phys. Rev. Lett. 113, 248301 (2014)ADSCrossRefGoogle Scholar
  71. 71.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    T. Bauer, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 111, 225702 (2013)ADSCrossRefGoogle Scholar
  73. 73.
    S. Albert, T. Bauer, M. Michl, G. Biroli, J.P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Science 352, 1308 (2016)ADSCrossRefGoogle Scholar
  74. 74.
    R. Seyboldt, D. Merger, F. Coupette, M. Siebenbürger, M. Ballauf, M. Wilhelm, M. Fuchs, Soft Matter 12, 8825 (2016)ADSCrossRefGoogle Scholar
  75. 75.
    D. L’Hôte, R. Tourbot, F. Ladieu, P. Gadige, Phys. Rev. B 90, 104202 (2014)ADSCrossRefGoogle Scholar
  76. 76.
    J.G. Oldroyd, Proc. R. Soc. London, Ser. A 200, 523 (1950)ADSCrossRefGoogle Scholar
  77. 77.
    C. Derec, A. Ajdari, F. Lequeux, Eur. Phys. J. E 4, 355 (2001)CrossRefGoogle Scholar
  78. 78.
    P. Coussot, Q.D. Nguyen, H.T. Huynh, D. Bonn, Phys. Rev. Lett. 88, 175501 (2002)ADSCrossRefGoogle Scholar
  79. 79.
    V.B. Nguyen, Phys. Rev. Lett. 107, 138303 (2011)ADSCrossRefGoogle Scholar
  80. 80.
    V. Mansard, A. Colin, P. Chaudhuri, L. Bocquet, Soft Matter 9, 7849 (2013)CrossRefGoogle Scholar
  81. 81.
    H. Bodiguel, J. Beaumont, A. Machado, L. Martinie, H. Kellay, A. Colin, Phys. Rev. Lett. 114, 028302 (2015)ADSCrossRefGoogle Scholar
  82. 82.
    H. Cárdenas, Continuum Mechanics Simulations of the Nonlinear Deformation of Glass-Forming Fluids, PhD thesis, University of Düsseldorf, 2017, in preparationGoogle Scholar
  83. 83.
    M. Fuchs, M.E. Cates, Faraday Discuss. 123, 267 (2003)ADSCrossRefGoogle Scholar
  84. 84.
    Th. Voigtmann, Eur. Phys. J. E 34, 106 (2011)CrossRefGoogle Scholar
  85. 85.
    S. Muller, R. Larson, E. Shaqfeh, Rheologica Acta 28, 499 (1989)CrossRefGoogle Scholar
  86. 86.
    L. Casanellas, M.A. Alves, R.J. Poole, S. Lerouge, A. Lindner, Soft Matter 12, 6167 (2016)ADSCrossRefGoogle Scholar
  87. 87.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)Google Scholar
  88. 88.
    B. Dünweg, A.J.C. Ladd, Adv. Polym. Sci. 221, 89 (2009)Google Scholar
  89. 89.
    S. Papenkort, Th. Voigtmann, J. Chem. Phys. 140, 164507 (2014)ADSCrossRefGoogle Scholar
  90. 90.
    S. Papenkort, Th. Voigtmann, J. Chem. Phys. 143, 044512 (2015)ADSCrossRefGoogle Scholar
  91. 91.
    S. Papenkort, Th. Voigtmann, J. Chem. Phys. 143, 204502 (2015)ADSCrossRefGoogle Scholar
  92. 92.
    E.A.J.F. Peters, M.A. Hulsen, B.H.A.A. van den Brule, J. Non-Newt. Fluid Mech. 89, 209 (2000)CrossRefGoogle Scholar
  93. 93.
    M.A. Hulsen, E.A.J.F. Peters, B.H.A.A. van den Brule, J. Non-Newt. Fluid Mech. 98, 201 (2001)CrossRefGoogle Scholar
  94. 94.
    M. Tomé, M. de Araujo, M. Alves, F. Pinho, J. Comput. Phys. 227, 4207 (2008)ADSMathSciNetCrossRefGoogle Scholar
  95. 95.
    A. Nicolas, J.L. Barrat, Phys. Rev. Lett. 110, 138304 (2013)ADSCrossRefGoogle Scholar
  96. 96.
    P. Scheidler, W. Kob, K. Binder, J. Phys. Chem. B 108, 6673 (2004)CrossRefGoogle Scholar
  97. 97.
    C.R. Nugent, K.V. Edmond, H.N. Patel, E.R. Weeks, Phys. Rev. Lett. 99, 025702 (2007)ADSCrossRefGoogle Scholar
  98. 98.
    H.B. Eral, D. van den Ende, F. Mugele, M.H.G. Duits, Phys. Rev. E 80, 061403 (2009)ADSCrossRefGoogle Scholar
  99. 99.
    M. Ozawa, W. Kob, A. Ikeda, K. Miyazaki, Proc. Natl. Acad. Sci. USA 112, 6914 (2015)ADSCrossRefGoogle Scholar
  100. 100.
    V. Krakoviack, Phys. Rev. E 84, 050501 (2011)ADSCrossRefGoogle Scholar
  101. 101.
    P. Jop, V. Mansard, P. Chaudhuri, L. Bocquet, A. Colin, Phys. Rev. Lett. 108, 148301 (2012)ADSCrossRefGoogle Scholar
  102. 102.
    F. Varnik, D. Raabe, Phys. Rev. E 77, 011504 (2008)ADSCrossRefGoogle Scholar
  103. 103.
    M. Frank, D. Anderson, E.R. Weeks, J.F. Morris, J. Fluid Mech. 493, 363 (2003)ADSCrossRefGoogle Scholar
  104. 104.
    S. Ghosh, F. Mugele, M.H.G. Duits, Phys. Rev. E 91, 052305 (2015)ADSCrossRefGoogle Scholar
  105. 105.
    S. Fritschi, Event-driven Brownian Dynamics Simulations of Two-dimensional Fluids far from Equilibrium, PhD thesis, University of Konstanz, 2017, in preparationGoogle Scholar
  106. 106.
    A. Scala, Th. Voigtmann, C. De Michele, J. Chem. Phys. 126, 134109 (2007)ADSCrossRefGoogle Scholar
  107. 107.
    F. Weysser, D. Hajnal, Phys. Rev. E 83, 041503 (2011)ADSCrossRefGoogle Scholar
  108. 108.
    B. Illing, S. Fritschi, H. Kaiser, C.L. Klix, G. Maret, P. Keim, Proc. Natl. Acad. Sci. USA 114, 1856 (2017)ADSCrossRefGoogle Scholar
  109. 109.
    O. Henrich, F. Weysser, M.E. Cates, M. Fuchs, Phil. Trans. R. Soc. A 367, 5033 (2009)ADSCrossRefGoogle Scholar
  110. 110.
    J. Goyon, A. Colin, G. Ovarlez, A. Ajdari, L. Bocquet, Nature (London) 454, 84 (2008)ADSCrossRefGoogle Scholar
  111. 111.
    J. Goyon, A. Colin, L. Bocquet, Soft Matter 6, 2668 (2010)ADSCrossRefGoogle Scholar
  112. 112.
    S. Fritschi, M. Fuchs, Th. Voigtmann, Soft Matter 10, 4822 (2014)ADSCrossRefGoogle Scholar
  113. 113.
    M. Ballauff, J.M. Brader, S.U. Egelhaaf, M. Fuchs, J. Horbach, N. Koumakis, M. Krüger, M. Laurati, K.J. Mutch, G. Petekidis et al., Phys. Rev. Lett. 110, 215701 (2013)ADSCrossRefGoogle Scholar
  114. 114.
    D. El Masri, L. Berthier, L. Cipelletti, Phys. Rev. E 82, 031503 (2010)ADSCrossRefGoogle Scholar
  115. 115.
    K. Vollmayr-Lee, J.A. Roman, J. Horbach, Phys. Rev. E 81, 061203 (2010)ADSCrossRefGoogle Scholar
  116. 116.
    A.M. Puertas, M. Fuchs, M.E. Cates, Phys. Rev. E 75, 031401 (2007)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Heliana Cárdenas
    • 1
  • Fabian Frahsa
    • 2
  • Sebastian Fritschi
    • 2
  • Alexandre Nicolas
    • 3
  • Simon Papenkort
    • 1
  • Thomas Voigtmann
    • 1
    • 4
  • Matthias Fuchs
    • 2
  1. 1.Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR)KölnGermany
  2. 2.Fachbereich Physik, Universität KonstanzKonstanzGermany
  3. 3.LPTMS, CNRS & Université Paris-SudOrsayFrance
  4. 4.Institut für Theoretische Physik, Heinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations