The European Physical Journal Special Topics

, Volume 226, Issue 14, pp 3095–3112 | Cite as

Nonlinear ion transport in liquid and solid electrolytes

Regular Article
Part of the following topical collections:
  1. Nonlinear Response to Probe Vitrification

Abstract

This paper describes nonlinear ion transport properties of liquid and solid electrolytes. Typically, the relation between ionic current density and electric field becomes nonlinear at electric fields above 50–100 kV/cm. We review the 1st and 2nd Wien effect found in classical strong and weak electrolyte solutions as well as the strong nonlinear ion transport effects observed for inorganic glasses and for polymer electrolytes. Furthermore, we give an overview over models describing nonlinear ion transport in electrolyte solutions, in glasses and in polymers. Recent results are presented for the nonlinear ionic conductivity of supercooled ionic liquids. We show that supercooled ionic liquids exhibit anomalous Wien effects, which are clearly distinct from the classical Wien effects. We also discuss the frequency dependence of higher-order conductivity and permittivity spectra of these liquids.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.M. Haregewoin, A.S. Wotango, B.-J. Hwang, Energy Env. Sci. 9, 1955 (2016)CrossRefGoogle Scholar
  2. 2.
    A. Gonzalez, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustainable Energy Rev. 58, 1189 (2016)CrossRefGoogle Scholar
  3. 3.
    Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen. J. Power Sources 208, 210 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    N.J. Kidner, N.H. Perry, T.O Mason, J. Am. Ceram. Soc. 91, 1733 (2008)CrossRefGoogle Scholar
  5. 5.
    P. Bron, S. Dehnen, B. Roling, J. Power Sources 329, 530 (2016)ADSCrossRefGoogle Scholar
  6. 6.
    F. Kohler, The Liquid State (Verlag Chemie, Weinheim, 1972)Google Scholar
  7. 7.
    B. Roling, C. Martiny, S. Brückner, Phys. Rev. B 63, 214203 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    M. Wien, Ann. Phys. 73, 161 (1924)CrossRefGoogle Scholar
  9. 9.
    H. Falkenhagen, Phys. Z. 30, 163 (1929)Google Scholar
  10. 10.
    W.S. Wilson, Dissertation, Yale University, 1936Google Scholar
  11. 11.
    L. Onsager, J. Chem. Phys. 2, 599 (1934)ADSCrossRefGoogle Scholar
  12. 12.
    R.J. Maurer, J. Chem. Phys. 9, 579 (1941)ADSCrossRefGoogle Scholar
  13. 13.
    J. Vermeer, Physica 22, 1257 (1956)ADSCrossRefGoogle Scholar
  14. 14.
    L. Zagar, E. Papanilolau, Glastechn. Ber. 42, 37 (1969)Google Scholar
  15. 15.
    J.P. Lacharme, J.O. Isard, J. Non-Cryst. Solids 27, 381 (1978)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. Hyde, M. Tomozawa, Phys. Chem. Glasses 27, 147 (1986)Google Scholar
  17. 17.
    J.L. Barton, J. Non-Cryst. Solids 203, 280 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    J.O. Isard, J. Non-Cryst. Solids 202, 137 (1996)ADSCrossRefGoogle Scholar
  19. 19.
    L.N. Patro, O. Burghaus, B. Roling J. Chem. Phys. 142, 064505 (2015)ADSCrossRefGoogle Scholar
  20. 20.
    L.N. Patro, O. Burghaus, B. Roling, Phys. Rev. Lett. 116, 185901 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    L.N. Patro, O. Burghaus, B. Roling, J. Chem. Phys. 146, 154503 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    A. Patterson Jr., Proc. Natl. Acad. Sci. 39, 146 (1953)ADSCrossRefGoogle Scholar
  23. 23.
    A. Patterson Jr., H. Freitag, J. Electrochem. Soc. 108, 529 (1961)CrossRefGoogle Scholar
  24. 24.
    H.C. Eckstrom, C. Schmelzer, Chem. Rev. 24, 367 (1939)CrossRefGoogle Scholar
  25. 25.
    S. Balasubramanian, K.J. Rao, J. Non-Cryst. Solids 181, 157 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    A. Heuer, K. Kunow, M. Vogel, R.D. Banhatti, Phys. Chem. Chem. Phys. 4, 3185 (2002)CrossRefGoogle Scholar
  27. 27.
    H. Staesche, B. Roling, Z. Phys. Chem. 224, 1655 (2010)CrossRefGoogle Scholar
  28. 28.
    Y. Tajitsu, J. Mater. Sci. 31, 2081 (1996)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Tajitsu, J. Electrostat. 42, 203 (1997)CrossRefGoogle Scholar
  30. 30.
    Y. Tajitsu, J. Electrostat. 43, 203 (1998)CrossRefGoogle Scholar
  31. 31.
    Y. Tajitsu, J. Mater. Sci. Lett. 18, 1287 (1999)CrossRefGoogle Scholar
  32. 32.
    H. Staesche, B. Roling, Phys. Rev. B 82, 134202 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    S. Summerfield, Phil. Mag. B 52, 9 (1985)ADSCrossRefGoogle Scholar
  34. 34.
    V. Kaiser, S.T. Bramwell, P.C.W. Holdsworth, R. Moessner, Nature Mater. 12, 1033 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    S. Röthel, R. Friedrich, L. Lühning, A. Heuer, Z. Phys. Chem. 224, 1855 (2010)CrossRefGoogle Scholar
  36. 36.
    B. Roling, J. Chem. Phys. 117, 1320 (2002)ADSCrossRefGoogle Scholar
  37. 37.
    A. Heuer, L. Lühning, J. Chem. Phys. 140, 094508 (2014)ADSCrossRefGoogle Scholar
  38. 38.
    J. Frenkel, Phys. Rev. 54, 647 (1938)ADSCrossRefGoogle Scholar
  39. 39.
    B. Huber, L. Rossrucker, J. Sundermeyer, B. Roling, Solid State Ionics 247–248, 15 (2013)CrossRefGoogle Scholar
  40. 40.
    S. Murugavel, B. Roling, J. Non-Cryst. Solids 351, 2819 (2005)ADSCrossRefGoogle Scholar
  41. 41.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hote, G. Biroli, J.-P. Bouchaud, Phys. Rev. Lett. 104, 165703 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    C. Brun, F. Ladieu, D. L’Hôte, M. Tarzia, G. Biroli, J.P. Bouchaud, Phys. Rev. B 84, 104204 (2011)ADSCrossRefGoogle Scholar
  43. 43.
    Th. Bauer, P. Lunkenheimer, A. Loidl, Phys. Rev. Lett. 111, 225702 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    R. Richert, J. Chem. Phys. 144, 114501 (2016)ADSCrossRefGoogle Scholar
  45. 45.
    S. Albert, Th. Bauer, M. Michl, G. Biroli, J.P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Science 352, 1308 (2016)ADSCrossRefGoogle Scholar
  46. 46.
    G. Diezemann, Phys. Rev. E 85, 051502 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    C. Mattner, B. Roling, A. Heuer, Solid State Ionics 261, 28 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • B. Roling
    • 1
  • L. N. Patro
    • 1
  • O. Burghaus
    • 1
  • M. Gräf
    • 1
  1. 1.Department of ChemistryUniversity of MarburgMarburgGermany

Personalised recommendations