The European Physical Journal Special Topics

, Volume 226, Issue 9, pp 1703–1719 | Cite as

Quasiperiodicity and suppression of multistability in nonlinear dynamical systems

  • Ying-Cheng LaiEmail author
  • Celso Grebogi
Part of the following topical collections:
  1. Recent Advances in Nonlinear Dynamics and Complex Structures: Fundamentals and Applications


It has been known that noise can suppress multistability by dynamically connecting coexisting attractors in the system which are otherwise in separate basins of attraction. The purpose of this mini-review is to argue that quasiperiodic driving can play a similar role in suppressing multistability. A concrete physical example is provided where quasiperiodic driving was demonstrated to eliminate multistability completely to generate robust chaos in a semiconductor superlattice system.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.S. Pikovsky, U. Feudel, Correlations and spectra of strange nonchaotic attractors, J. Phys. A: Math. Gen. 27, 5209 (1994)ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    U. Feudel, A.S. Pikovsky, M.A. Zaks, Correlation properties of a quasiperiodically forced two-level system, Phys. Rev. E 51, 1762 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    A.S. Pikovsky, U. Feudel, Characterizing strange nonchaotic attractors, Chaos 5, 253 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    S.P. Kuznetsov, A.S. Pikovsky, U. Feudel, Birth of a strange nonchaotic attractor: A renormalization group analysis, Phys. Rev. E 51, R1629 (1995)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    U. Feudel, J. Kurths, A.S. Pikovsky, Strange non-chaotic attractor in a quasiperiodically forced circle map, Physica D 88, 176 (1995)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    A.S. Pikovsky, M.A. Zaks, U. Feudel, J. Kurths, Singular continuous spectra in dissipative dynamics, Phys. Rev. E 52, 285 (1995)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    Y.-C. Lai, U. Feudel, C. Grebogi, Scaling behaviors in the transition to chaos in quasiperiodically driven dynamical systems, Phys. Rev. E 54, 6070 (1996)ADSCrossRefGoogle Scholar
  8. 8.
    U. Feudel, A. Pikovsky, A. Politi, Renormalization of correlations and spectra of a strange non-chaotic attractor, J. Phys. A: Math. Gen. 29, 5297 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    A. Witt, U. Feudel, A. Pikovsky, Birth of strange nonchaotic attractors due to interior crisis, Physica D 109, 180 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    U. Feudel, C. Grebogi, E. Ott, Phase-locking in quasiperiodically forced systems, Phys. Rep. 290, 11 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    U. Feudel, A. Witt, Y.-C. Lai, C. Grebogi, Basin bifurcation in quasiperiodically forced systems, Phys. Rev. E 58, 3060 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    H.M. Osinga, U. Feudel, Boundary crisis in quasiperiodically forced systems, Physica D 141, 54 (2000)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    E. Neumann, I. Sushko, Y. Maistrenko, U. Feudel, Synchronization and desynchronization under the influence of quasiperiodic forcing, Phys. Rev. E 67, 026202 (2003)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    M.D. Shrimali, A. Prasad, R. Ramaswamy, U. Feudel, Basin bifurcations in quasiperiodically forced coupled systems, Phys. Rev. E 72, 036215 (2005)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    U. Feudel, S. Kuznetsov, A. Pikovsky, Strange Nonchaotic Attractors: Dynamics Between Order and Chaos in Quasiperiodically Forced Systems (World Scientific, Singapore, 2006)Google Scholar
  16. 16.
    U. Feudel, C. Grebogi, B.R. Hunt, J.A. Yorke, Map with more than 100 coexisting low-period periodic attractors, Phys. Rev. E 54, 71 (1996)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    U. Feudel, C. Grebogi, Multistability and the control of complexity, Chaos 7, 597 (1997)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    S. Kraut, U. Feudel, C. Grebogi, Preference of attractors in noisy multistable systems, Phys. Rev. E 59, 5253 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    S. Kraut, U. Feudel, Multistability, noise, and attractor hopping: The crucial role of chaotic saddles, Phys. Rev. E 66, 015207 (2002)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    S. Kraut, U. Feudel, Enhancement of noise-induced escape through the existence of a chaotic saddle, Phys. Rev. E 67, 015204(R) (2003)ADSzbMATHCrossRefGoogle Scholar
  21. 21.
    S. Kraut, U. Feudel, Noise-induced escape through a chaotic saddle: Lowering of the activation energy, Physica D 181, 222 (2003)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    U. Feudel, C. Grebogi, Why are chaotic attractors rare in multistable systems, Phys. Rev. Lett. 91, 134102 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    C.N. Ngonghala, U. Feudel, K. Showalter, Extreme multistability in a chemical model system, Phys. Rev. E 83, 056206 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M.S. Patel, U. Patel, S. Sen, G.C. Sethia, C. Hens, S.K. Dana, U. Feudel, K. Showalter, C.N. Ngonghala, R.E. Amritkar, Experimental observation of extreme multistability in an electronic system of two coupled Rössler oscillators, Phys. Rev. E 89, 022918 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    A.N. Pisarchik, U. Feudel, Control of multistability, Phys. Rep. 540, 167 (2014)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    M. Ding, C. Grebogi, E. Ott, Evolution of attractors in quasiperiodically forced systems: From quasiperiodic to strange nonchaotic to chaotic, Phys. Rev. A 39, 2593 (1989)ADSCrossRefGoogle Scholar
  27. 27.
    C. Grebogi, S.W. McDonald, E. Ott, J.A. Yorke, Final state sensitivity: an obstruction to predictability, Phys. Lett. A 99, 415 (1983)ADSMathSciNetCrossRefGoogle Scholar
  28. 28.
    S.W. McDonald, C. Grebogi, E. Ott, J.A. Yorke, Fractal basin boundaries, Physica D 17, 125 (1985)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    L. Yu, E. Ott, Q. Chen, Transition to chaos for random dynamical systems, Phys. Rev. Lett. 65, 2935 (1990)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    L. Yu, E. Ott, Q. Chen, Fractal distribution of floaters on a fluid surface and the transition to chaos for random maps, Physica D 53, 102 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    F. Romeiras, C. Grebogi, E. Ott, Multifractal properties of snapshot attractors of random maps, Phys. Rev. A 41, 784 (1990)ADSMathSciNetCrossRefGoogle Scholar
  32. 32.
    Z. Liu, Y.-C. Lai, L. Billings, I.B. Schwartz, Transition to chaos in continuous-time random dynamical systems, Phys. Rev. Lett. 88, 124101 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    Y.-C. Lai, Z. Liu, L. Billings, I.B. Schwartz, Noise-induced unstable dimension variability and transition to chaos in random dynamical systems, Phys. Rev. E 67, 026210 (2003)ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    T. Tél, Y.-C. Lai, Quasipotential approach to critical scaling in noise-induced chaos, Phys. Rev. E 81, 056208 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    Y.-C. Lai, Transition from strange nonchaotic to strange chaotic attractors, Phys. Rev. E 53, 57 (1996)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    T. Yalçıinkaya, Y.-C. Lai, Blowout bifurcation route to strange nonchaotic attractors, Phys. Rev. Lett. 77, 5039 (1996)ADSCrossRefGoogle Scholar
  37. 37.
    T. Yalçıinkaya, Y.-C. Lai, Bifurcation to strange nonchaotic attractors, Phys. Rev. E 56, 1623 (1997)ADSMathSciNetCrossRefGoogle Scholar
  38. 38.
    X. Wang, M. Zhan, C.-H. Lai, Y.-C. Lai, Strange nonchaotic attractors in random dynamical systems, Phys. Rev. Lett. 92, 074102 (2004)ADSCrossRefGoogle Scholar
  39. 39.
    K. Kaneko, Dominance of Milnor attractors and noise-induced selection in a multiattractor system, Phys. Rev. Lett. 78, 2736 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    L. Ying, D. Huang, Y.-C. Lai, Multistability, chaos, and random signal generation in semiconductor superlattices, Phys. Rev. E 93, 062204 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    Y.-C. Lai, T. Tél, Transient Chaos – Complex Dynamics on Finite Time Scales (Springer, New York, 2011)Google Scholar
  42. 42.
    Y.-C. Lai, C. Grebogi, J.A. Yorke, I. Kan, How often are chaotic saddles nonhyperbolic? Nonlinearity 6, 779 (1993)Google Scholar
  43. 43.
    H. Kantz, C. Grebogi, A. Prasad, Y.-C. Lai, E. Sinde, Unexpected robustness against noise of a class of nonhyperbolic chaotic attractors, Phys. Rev. E 65, 026209 (2002)ADSMathSciNetCrossRefGoogle Scholar
  44. 44.
    S. Kraut, C. Grebogi, Escaping from nonhyperbolic chaotic attractors, Phys. Rev. Lett. 92, 234101 (2004)ADSCrossRefGoogle Scholar
  45. 45.
    J.C. Sommerer, E. Ott, C. Grebogi, Scaling law for characteristic times of noise-induced crises, Phys. Rev. A 43, 1754 (1991)ADSCrossRefGoogle Scholar
  46. 46.
    F. Ledrappier, L.-S. Young, Dimension formula for random transformations, Commun. Math. Phys. 117, 529 (1988)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    M.I. Freidlin, A. Wentzell, Random Perturbations of Dynamical Systems (Springer, New York, 1984)Google Scholar
  48. 48.
    R. Graham, T. Tél, Existence of a potential for dissipative dynamical systems, Phys. Rev. Lett. 52, 9 (1984)ADSMathSciNetCrossRefGoogle Scholar
  49. 49.
    R. Graham, in Noise in Nonlinear Dynamical Systems, edited by F. Moss, P.V.E. McClintock (Cambridge University Press, Cambridge, 1989), Vol. 1, p. 225Google Scholar
  50. 50.
    P. Grassberger, Noise-induced escape from attractors, J. Phys. A 22, 3283 (1989)ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    R. Graham, A. Hamm, T. Tél, Nonequilibrium potentials for dynamical systems with fractal attractors and repellers, Phys. Rev. Lett. 66, 3089 (1991)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    P. Reimann, P. Talkner, Invariant densities for noisy maps, Phys. Rev. A 44, 6348 (1991)ADSMathSciNetCrossRefGoogle Scholar
  53. 53.
    A. Hamm, R. Graham, Noise-induced attractor explosions near tangent bifurcations, J. Stat. Phys. 66, 689 (1992)ADSCrossRefGoogle Scholar
  54. 54.
    A. Hamm, T. Tél, R. Graham, Noise-induced attractor explosions near tangent bifurcations, Phys. Lett. A 185, 313 (1994)ADSCrossRefGoogle Scholar
  55. 55.
    J.C. Sommerer, E. Ott, Particles floating on a moving fluid: a dynamically comprehensive physical fractal, Science 259, 335 (1993)ADSCrossRefGoogle Scholar
  56. 56.
    H. Fujisaka, T. Yamada, A new intermittency in coupled dynamical systems, Prog. Theor. Phys. 74, 918 (1985)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    H. Fujisaka, T. Yamada, Stability theory of synchronized motion in coupled-oscillator systems 4. instability of synchronized chaos and new intermittency, Prog. Theor. Phys. 75, 1087 (1986)ADSCrossRefGoogle Scholar
  58. 58.
    H. Fujisaka, H. Ishii, M. Inoue, T. Yamada, Intermittency caused by chaotic modulation 2. Lyapunov exponent, fractal structure, and power spectrum, Prog. Theor. Phys. 76, 1198 (1986)ADSMathSciNetCrossRefGoogle Scholar
  59. 59.
    N. Platt, E.A. Spiegel, C. Tresser, On-off intermittency: a mechanism for bursting, Phys. Rev. Lett. 70, 279 (1993)ADSCrossRefGoogle Scholar
  60. 60.
    J.F. Heagy, N. Platt, S.M. Hammel, Characterization of on-off intermittency, Phys. Rev. E 49, 1140 (1994)ADSCrossRefGoogle Scholar
  61. 61.
    N. Platt, S.M. Hammel, J.F. Heagy, Effects of additive noise on on-off intermittency, Phys. Rev. Lett. 72, 3498 (1994)ADSCrossRefGoogle Scholar
  62. 62.
    P.W. Hammer, N. Platt, S.M. Hammel, J.F. Heagy, B.D. Lee, Experimental observation of on-off intermittency, Phys. Rev. Lett. 73, 1095 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    J.C. Sommerer, E. Ott, Blowout bifurcations – the occurrence of riddled basins and on-off intermittency, Phys. Lett. A 188, 39 (1994)ADSCrossRefGoogle Scholar
  64. 64.
    Y.-C. Lai, C. Grebogi, Intermingled basins and two-state on-off intermittency, Phys. Rev. E 52, R3313 (1995)ADSCrossRefGoogle Scholar
  65. 65.
    S.C. Venkataramani, T.M. Antonsen, E. Ott, J.C. Sommerer, Characterization of on-off intermittent time-series, Phys. Lett. A 207, 173 (1995)ADSzbMATHCrossRefGoogle Scholar
  66. 66.
    P. Ashwin, E. Stone, Influence of noise near blowout bifurcation, Phys. Rev. E 56, 1635 (1996)ADSMathSciNetCrossRefGoogle Scholar
  67. 67.
    Y.-C. Lai, Symmetry-breaking bifurcation with on-off intermittency in chaotic dynamical systems, Phys. Rev. E 53, R4267-R4270 (1996)ADSMathSciNetGoogle Scholar
  68. 68.
    Y.-C. Lai, Distinct small-distance scaling behavior of on-off intermittency in chaotic dynamical systems, Phys. Rev. E 54, 321 (1996)ADSCrossRefGoogle Scholar
  69. 69.
    S.C. Venkataramani, T.M. Antonsen, E. Ott, J.C. Sommerer, On-off intermittency – power spectrum and fractal properties of time-series, Physica D 96, 66 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    D. Marthaler, D. Armbruster, Y.-C. Lai, E.J. Kostelich, Perturbed on-off intermittency, Phys. Rev. E 64, 016220 (2001)ADSCrossRefGoogle Scholar
  71. 71.
    E.L. Rempel, A.C. Chian, Origin of transient and intermittent dynamics in spatiotemporal chaotic systems, Phys. Rev. Lett. 98, 014101 (2007)ADSCrossRefGoogle Scholar
  72. 72.
    L. Huang, X. Ni, W.L. Ditto, M. Spano, P.R. Carney, Y.-C. Lai, Detecting and characterizing high frequency oscillations in epilepsy - a case study of big data analysis, Roy. Soc. Open Sci. 4, 160741 (2017)CrossRefGoogle Scholar
  73. 73.
    R. Serquina, Y.-C. Lai, Q. Chen, Characterization of nonstationary chaotic systems, Phys. Rev. E 77, 026208 (2008)ADSCrossRefGoogle Scholar
  74. 74.
    B. Kaszás, U. Feudel, T. Tél, Death and revival of chaos, Phys. Rev. E 94, 062221 (2016)ADSCrossRefGoogle Scholar
  75. 75.
    F.J. Romeiras, A. Bondeson, E. Ott, T.M.A. Jr, C. Grebogi, Quasiperiodically forced dynamical systems with strange nonchaotic attractors, Physica D 26, 277 (1987)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  76. 76.
    F.J. Romeiras, E. Ott, Strange nonchaotic attractors of the damped pendulum with quasiperiodic forcing, Phys. Rev. A 35, 4404 (1987)ADSMathSciNetCrossRefGoogle Scholar
  77. 77.
    A. Bondeson, E. Ott, T.M. Antonsen, Quasiperiodically forced damped pendula and Schrödinger equations with quasiperiodic potentials: Implications of their equivalence, Phys. Rev. Lett. 55, 2103 (1985)ADSMathSciNetCrossRefGoogle Scholar
  78. 78.
    L. Esaki, R. Tsu, Superlattice and negative differential conductivity in semiconductors, IBM J. Res. Dev. 14, 61 (1970)CrossRefGoogle Scholar
  79. 79.
    H.T. Grahn, Semiconductor Supperlattices,Growth and Electronic Properties (World Scientific, Singapore, 1995)Google Scholar
  80. 80.
    Y. Zhang, J. Kastrup, R. Klann, K.H. Ploog, H.T. Grahn, Synchronization and chaos induced by resonant tunneling in gaas/alas superlattices, Phys. Rev. Lett. 77, 3001 (1996)ADSCrossRefGoogle Scholar
  81. 81.
    X.L. Lei, C.S. Ting, Theory of nonlinear electron transport for solids in a strong electric field, Phys. Rev. B 30, 4809 (1984)ADSCrossRefGoogle Scholar
  82. 82.
    X.L. Lei, C.S. Ting, Green’s-function approach to nonlinear electronic transport for an electron-impurity-phonon system in a strong electric field, Phys. Rev. B 32, 1112 (1985)ADSCrossRefGoogle Scholar
  83. 83.
    X.L. Lei, N.J.M. Horing, H.L. Cui, Theory of negative differential conductivity in a superlattice miniband, Phys. Rev. Lett. 66, 3277 (1991)ADSCrossRefGoogle Scholar
  84. 84.
    X.L. Lei, High-frequency differential mobility in vertical transport of a confined superlattice, J. Phys.: Condens. Matter 6, 10043 (1994)ADSGoogle Scholar
  85. 85.
    X.L. Lei, Balance equations for electron transport in a general energy band, J. Phys.: Condens. Matter 6, 9189 (1994)ADSGoogle Scholar
  86. 86.
    A.A. Ignatov, E.P. Dodin, V.I. Shashkin, Transient response theory for semiconductor superlattices: connection with Bloch oscillations, Mod. Phys. Lett. B 5, 1087 (1991)ADSCrossRefGoogle Scholar
  87. 87.
    R.R. Gerhardts, Effect of elastic scattering on miniband transport in semiconductor superlattices, Phys. Rev. B 48, 9178 (1993)ADSCrossRefGoogle Scholar
  88. 88.
    M. Büttiker, H. Thomas, Current instability and domain propagation due to Bragg scattering, Phys. Rev. Lett. 38, 78 (1977)ADSCrossRefGoogle Scholar
  89. 89.
    M. Büttiker, H. Thomas, Hydrodynamic modes, soft modes and fluctuation spectra near the threshold of a current instability, Z. Phys. B 33, 275 (1979)ADSMathSciNetCrossRefGoogle Scholar
  90. 90.
    M. Büttiker, H. Thomas, Bifurcation and stability of dynamical structures at a current instability, Z. Phys. B 34, 301 (1979)ADSCrossRefGoogle Scholar
  91. 91.
    X.L. Lei, Balance equations for hot electron transport in an arbitrary energy band, Phys. Status Solidi B 170, 519 (1992)ADSCrossRefGoogle Scholar
  92. 92.
    X.L. Lei, Investigation of the Buttiker-Thomas momentum balance equation from the Heisenberg equation of motion for Bloch electrons, J. Phys.: Condens. Matter 7, L429 (1995)ADSGoogle Scholar
  93. 93.
    K.N. Alekseev, E.H. Cannon, J.C. McKinney, F.V. Kusmartsev, D.K. Campbell, Spontaneous dc current generation in a resistively shunted semiconductor superlattice driven by a terahertz field, Phys. Rev. Lett. 80, 2669 (1998)ADSCrossRefGoogle Scholar
  94. 94.
    K.N. Alekseev, G.P. Berman, D.K. Campbell, E.H. Cannon, M.C. Cargo, Dissipative chaos in semiconductor superlattices, Phys. Rev. B 54, 10625 (1996)ADSCrossRefGoogle Scholar
  95. 95.
    E. Schöll, Nonlinear Spatiotemporal Dynamics and Chaos in Semiconductors (Cambridge University Press, Cambridge, UK, 2001)Google Scholar
  96. 96.
    O.M. Bulashenko, M.J. García, L.L. Bonilla, Chaotic dynamics of electric-field domains in periodically driven superlattices, Phys. Rev. B 53, 10008 (1996)ADSCrossRefGoogle Scholar
  97. 97.
    M. Patra, G. Schwarz, E. Schöll, Bifurcation analysis of stationary and oscillating domains in semiconductor superlattices with doping fluctuations, Phys. Rev. B 57, 1824 (1998)ADSCrossRefGoogle Scholar
  98. 98.
    K.J. Luo, H.T. Grahn, K.H. Ploog, L.L. Bonilla, Explosive bifurcation to chaos in weakly coupled semiconductor superlattices, Phys. Rev. Lett. 81, 1290 (1998)ADSCrossRefGoogle Scholar
  99. 99.
    K.N. Alekseev, E.H. Cannon, J.C. McKinney, F.V. Kusmartsev, D.K. Campbell, Symmetry-breaking and chaos in electron transport in semiconductor superlattices, Physica D 113, 129 (1998)ADSzbMATHCrossRefGoogle Scholar
  100. 100.
    J.C. Cao, X.L. Lei, Synchronization and chaos in miniband semiconductor superlattices, Phys. Rev. B 60, 1871 (1999)ADSCrossRefGoogle Scholar
  101. 101.
    J.C. Cao, H.C. Liu, X.L. Lei, Chaotic dynamics in quantum-dot miniband superlattices, Phys. Rev. B 61, 5546 (2000)ADSCrossRefGoogle Scholar
  102. 102.
    D. Sánchez, G. Platero, L.L. Bonilla, Quasiperiodic current and strange attractors in ac-driven superlattices, Phys. Rev. B 63, 201306 (2001)ADSCrossRefGoogle Scholar
  103. 103.
    K.N. Alekseev, F.V. Kusmartsev, Pendulum limit, chaos and phase-locking in the dynamics of ac-driven semiconductor superlattices, Phys. Lett. A 305, 281 (2002)ADSzbMATHCrossRefGoogle Scholar
  104. 104.
    K.N. Alekseev, G.P. Bermana, D.K. Campbell, Dynamical instabilities and deterministic chaos in ballistic electron motion in semiconductor superlattices, Phys. Lett. A 193, 54 (1994)ADSCrossRefGoogle Scholar
  105. 105.
    A. Amann, J. Schlesner, A. Wacker, E. Schöll, Chaotic front dynamics in semiconductor superlattices, Phys. Rev. B 65, 193313 (2002)ADSCrossRefGoogle Scholar
  106. 106.
    L.L. Bonilla, H.T. Grahn, Non-linear dynamics of semiconductor superlattices, Rep. Prog. Phys. 68, 577 (2005)ADSCrossRefGoogle Scholar
  107. 107.
    J. Galán, L.L. Bonilla, M. Moscoso, Bifurcation behavior of a superlattice model, SIAM J. Appl. Math. 60, 2029 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  108. 108.
    M.T. Greenaway, A.G. Balanov, E. Schöll, T.M. Fromhold, Controlling and enhancing terahertz collective electron dynamics in superlattices by chaos-assisted miniband transport, Phys. Rev. B 80, 205318 (2009)ADSCrossRefGoogle Scholar
  109. 109.
    S.P. Stapleton, S. Bujkiewicz, T.M. Fromhold, P.B. Wilkinson, A. Patané, L. Eaves, A.A. Krokhin, M. Henini, N.S. Sankeshwar, F.W. Sheard, Use of stochastic web patterns to control electron transport in semiconductor superlattices, Physica D 199, 166 (2004)ADSzbMATHCrossRefGoogle Scholar
  110. 110.
    C. Wang, J.-C. Cao, Current oscillation and chaotic dynamics in superlattices driven by crossed electric and magnetic fields, Chaos 15, 013111 (2005)ADSCrossRefGoogle Scholar
  111. 111.
    A.G. Balanov, D. Fowler, A. Patanè, L. Eaves, T.M. Fromhold, Bifurcations and chaos in semiconductor superlattices with a tilted magnetic field, Phys. Rev. E 77, 026209 (2008)ADSCrossRefGoogle Scholar
  112. 112.
    K.J. Luo, H.T. Grahn, S.W. Teitsworth, K.H. Ploog, Influence of higher harmonics on poincaré maps derived from current self-oscillations in a semiconductor superlattice, Phys. Rev. B 58, 12613 (1998)ADSCrossRefGoogle Scholar
  113. 113.
    Y.-H. Zhang, R. Klann, H.T. Grahn, K.H. Ploog, Transition between synchronization and chaos in doped gaas/alas superlattices, Superlatt. Microstruc. 21, 565 (1997)ADSCrossRefGoogle Scholar
  114. 114.
    T.M. Fromhold, A. Patané, S. Bujkiewicz, P.B. Wilkinson, D. Fowler, D. Sherwood, S.P. Stapleton, A.A. Krokhin, L. Eaves, M. Henini, N.S. Sankeshwar, F.W. Sheard, Chaotic electron diffusion through stochastic webs enhances current flow in superlattices, Nature 428, 726 (2004)ADSzbMATHCrossRefGoogle Scholar
  115. 115.
    A.E. Hramov, V.V. Makarov, A.A. Koronovskii, S.A. Kurkin, M.B. Gaifullin, N.V. Alexeeva, K.N. Alekseev, M.T. Greenaway, T.M. Fromhold, A. Patanè, F.V. Kusmartsev, V.A. Maksimenko, O.I. Moskalenko, A.G. Balanov, Subterahertz chaos generation by coupling a superlattice to a linear resonator, Phys. Rev. Lett. 112, 116603 (2014)ADSCrossRefGoogle Scholar
  116. 116.
    T. Hyart, A.V. Shorokhov, K.N. Alekseev, Theory of parametric amplification in superlattices, Phys. Rev. Lett. 98, 220404 (2007)ADSCrossRefGoogle Scholar
  117. 117.
    T. Hyart, K.N. Alekseev, E.V. Thuneberg, Bloch gain in dc-ac-driven semiconductor superlattices in the absence of electric domains, Phys. Rev. B 77, 165330 (2008)ADSCrossRefGoogle Scholar
  118. 118.
    T. Hyart, N.V. Alexeeva, J. Mattas, K.N. Alekseev, Terahertz Bloch oscillator with a modulated bias, Phys. Rev. Lett. 102, 140405 (2009)ADSCrossRefGoogle Scholar
  119. 119.
    T. Hyart, J. Mattas, K.N. Alekseev, Model of the influence of an external magnetic field on the gain of terahertz radiation from semiconductor superlattices, Phys. Rev. Lett. 103, 117401 (2009)ADSCrossRefGoogle Scholar
  120. 120.
    T. Hyart, Tunable Superlattice Amplifiers Based on Dynamics of Miniband Electrons in Electric and Magnetic Fields (Ph.D. Dissertation) (University of Oulu, Finland, 2009)Google Scholar
  121. 121.
    P.H. Siegel, Terahertz technology, IEEE Trans. Microw. Theory Tech. 50, 910 (2002)ADSCrossRefGoogle Scholar
  122. 122.
    B. Ferguson, X.-C. Zhang, Materials for terahertz science and technology, Nat. Mater. 1, 26 (2002)ADSCrossRefGoogle Scholar
  123. 123.
    T.W. Crowe, W.L. Bishop, D.W. Porterfield, J.L. Hesler, R.M. Weikle, Opening the terahertz window with integrated diode circuits, IEEE J. Solid-State Cir. 40, 2104 (2005)CrossRefGoogle Scholar
  124. 124.
    M. Tonouchi, Cutting-edge terahertz technology, Nat. Photon. 1, 97 (2009)ADSCrossRefGoogle Scholar
  125. 125.
    L. Kocarev, Chaos-based cryptography: a brief overview, IEEE Cir. Sys. Magaz. 1, 6 (2001)CrossRefGoogle Scholar
  126. 126.
    T. Stojanovski, L. Kocarev, Chaos-based random number generators-part i: analysis [cryptography], IEEE Trans. Cir. Sys. I. Funda. Theo. App. 48, 281 (2001)zbMATHCrossRefGoogle Scholar
  127. 127.
    T. Stojanovski, J. Pihl, L. Kocarev, Chaos-based random number generators. part ii: practical realization, IEEE Trans. Cir. Sys. I. Funda. Theo. App. 48, 382 (2001)zbMATHCrossRefGoogle Scholar
  128. 128.
    M. Drutarovský, P. Galajda, Chaos-based true random number generator embedded in a mixed-signal reconfigurable hardware, J. Elec. Eng. 57, 218 (2006)Google Scholar
  129. 129.
    T. Lin, L.O. Chua, A new class of pseudo-random number generator based on chaos in digital filters, Int. J. Cir. Theo. App. 21, 473 (2006)zbMATHCrossRefGoogle Scholar
  130. 130.
    A. Uchida, K. Amano, M. Inoue, K. Hirano, S. Naito, H. Someya, I. Oowada, T. Kurashige, M. Shiki, S. Yoshimori, K. Yoshimura, P. Davis, Fast physical random bit generation with chaotic semiconductor lasers, Nat. Photon. 2, 728 (2008)ADSCrossRefGoogle Scholar
  131. 131.
    I. Reidler, Y. Aviad, M. Rosenbluh, I. Kanter, Ultrahigh-speed random number generation based on a chaotic semiconductor laser, Phys. Rev. Lett. 103, 024102 (2009)ADSCrossRefGoogle Scholar
  132. 132.
    Q. Chen, L. Huang, Y.-C. Lai, C. Grebogi, D. Dietz, Extensively chaotic motion in electrostatically driven nanowires and applications, Nano lett. 10, 406 (2010)ADSCrossRefGoogle Scholar
  133. 133.
    J.-Z. Zhang, Y.-C. Wang, M. Liu, L.-G. Xue, P. Li, A.-B. Wang, M.-J. Zhang, A robust random number generator based on differential comparison of chaotic laser signals, Opt. Expr. 20, 7496 (2012)ADSCrossRefGoogle Scholar
  134. 134.
    D. Huang, P.M. Alsing, T. Apostolova, D.A. Cardimona, Coupled energy-drift and force-balance equations for high-field hot-carrier transport, Phys. Rev. B 71, 195205 (2005)ADSCrossRefGoogle Scholar
  135. 135.
    D. Huang, P.M. Alsing, Many-body effects on optical carrier cooling in intrinsic semiconductors at low lattice temperatures, Phys. Rev. B 78, 035206 (2008)ADSCrossRefGoogle Scholar
  136. 136.
    D. Huang, D.A. Cardimona, Nonadiabatic effects in a self-consistent hartree model for electrons under an ac electric field in multiple quantum wells, Phys. Rev. B 67, 245306 (2003)ADSCrossRefGoogle Scholar
  137. 137.
    D. Huang, S.K. Lyo, G. Gumbs, Bloch oscillation, dynamical localization, and optical probing of electron gases in quantum-dot superlattices in high electric fields, Phys. Rev. B 79, 155308 (2009)ADSCrossRefGoogle Scholar
  138. 138.
    C. Grebogi, E. Ott, J.A. Yorke, Crises, sudden changes in chaotic attractors and transient chaos, Physica D 7, 181 (1983)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  139. 139.
    J.C. Alexander, J.A. Yorke, Z. You, I. Kan, Riddled basins, Int. J. Bifurc. Chaos Appl. Sci. Eng. 2, 795 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  140. 140.
    E. Ott, J.C. Alexander, I. Kan, J.C. Sommerer, J.A. Yorke, The transition to chaotic attractors with riddled basins, Physica D 76, 384 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  141. 141.
    P. Ashwin, J. Buescu, I. Stewart, Bubbling of attractors and synchronisation of oscillators, Phys. Lett. A 193, 126 (1994)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  142. 142.
    J.F. Heagy, T.L. Carroll, L.M. Pecora, Experimental and numerical evidence for riddled basins in coupled chaotic systems, Phys. Rev. Lett. 73, 3528 (1994)ADSCrossRefGoogle Scholar
  143. 143.
    Y.-C. Lai, C. Grebogi, J.A. Yorke, S. Venkataramani, Riddling bifurcation in chaotic dynamical systems, Phys. Rev. Lett. 77, 55 (1996)ADSCrossRefGoogle Scholar
  144. 144.
    Y.-C. Lai, C. Grebogi, Noise-induced riddling in chaotic dynamical systems, Phys. Rev. Lett. 77, 5047 (1996)ADSCrossRefGoogle Scholar
  145. 145.
    P. Ashwin, J. Buescu, I. Stewart, From attractor to chaotic saddle: a tale of transverse instability, Nonlinearity 9, 703 (1996)ADSMathSciNetzbMATHCrossRefGoogle Scholar
  146. 146.
    Y.-C. Lai, V. Andrade, Catastrophic bifurcation from riddled to fractal basins, Phys. Rev. E 64, 056228 (2001)ADSMathSciNetCrossRefGoogle Scholar
  147. 147.
    Y.-C. Lai, Scaling laws for noise-induced temporal riddling in chaotic systems, Phys. Rev. E 56, 3897 (1997)ADSMathSciNetCrossRefGoogle Scholar
  148. 148.
    L. Billings, J.H. Curry, E. Phipps, Lyapunov exponents, singularities, and a riddling bifurcation, Phys. Rev. Lett. 79, 1018 (1997)ADSCrossRefGoogle Scholar
  149. 149.
    Y.-C. Lai, C. Grebogi, Riddling of chaotic sets in periodic windows, Phys. Rev. Lett. 83, 2926 (1999)ADSCrossRefGoogle Scholar
  150. 150.
    Y.-C. Lai, Catastrophe of riddling, Phys. Rev. E 62, R4505 (2000)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.School of Electrical, Computer, and Energy Engineering, Arizona State UniversityTempe, ArizonaUSA
  2. 2.Institute for Complex Systems and Mathematical Biology, King’s College, University of AberdeenAberdeenUK

Personalised recommendations