Skip to main content

Exact diagonalization as an impurity solver in dynamical mean field theory

Abstract

The dynamical mean-field theory (DMFT) maps a correlated lattice problem onto an impurity problem of a single correlated site coupled to an uncorrelated bath. Most implementations solve the DMFT equations using quantum Monte-Carlo sampling on the imaginary time and frequency (Matsubara) axis. We will here review alternative methods using exact diagonalization, i.e., representing the many-body ground state of the impurity as a sum over Slater determinants and calculating Green’s functions using iterative Lanczos procedures. The advantage being that these methods have no sign problem, can handle involved multi-orbital Hamiltonians (low crystal symmetry, spin-orbit coupling) and – when working completely on the real axis – do not need a mathematically ill-posed analytical continuation. The disadvantage of traditional implementations of exact diagonalization has been the exponential scaling of the calculation problem as a function of number of bath discretization points. In the last part we will review how recent advances in exact diagonalization can evade the exponential barrier thereby increasing the number of bath discretization points to reach the thermodynamic limit.

References

  1. O. Gunnarsson, K. Schönhammer, Phys. Rev. Lett. 50, 604 (1983)

    ADS  Article  Google Scholar 

  2. O. Gunnarsson, K. Schönhammer, Phys. Rev. B 28, 4315 (1983)

    ADS  Article  Google Scholar 

  3. O. Gunnarsson, K. Schönhammer, Phys. Rev. B 31, 4815 (1985)

    ADS  Article  Google Scholar 

  4. G.D. Mahan, Phys. Rev. 163, 612 (1967)

    ADS  Article  Google Scholar 

  5. B. Roulet, J. Gavoret, P. Nozières, Phys. Rev. 178, 1072 (1969)

    ADS  Article  Google Scholar 

  6. P. Nozieres, C.T. De Dominicis, Phys. Rev. 178, 1097 (1969)

    ADS  Article  Google Scholar 

  7. P. Nozières, J. Gavoret, B. Roulet, Phys. Rev. 178, 1084 (1969)

    ADS  Article  Google Scholar 

  8. S. Doniach, M. Sunjic, J. Phys. C: Solid State Phys. 3, 285 (1970)

    ADS  Article  Google Scholar 

  9. E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83, 349 (2011)

    ADS  Article  Google Scholar 

  10. P. Werner, A. Comanac, L. de’ Medici, M. Troyer, A.J. Millis, Phys. Rev. Lett. 97, 076405 (2006)

    ADS  Article  Google Scholar 

  11. P. Werner, A.J. Millis, Phys. Rev. B 74, 155107 (2006)

    ADS  Article  Google Scholar 

  12. S. Sakai, R. Arita, K. Held, H. Aoki, Phys. Rev. B 74, 155102 (2006)

    ADS  Article  Google Scholar 

  13. E. Gull, P. Werner, O. Parcollet, M. Troyer, Europhys. Lett. 82, 57003 (2008)

    ADS  Article  Google Scholar 

  14. H. Hafermann, P. Werner, E. Gull, Comput. Phys. Commun. 184, 1280 (2013)

    ADS  Article  Google Scholar 

  15. D. Rost, F. Assaad, N. Blümer, Phys. Rev. E 87, 053305 (2013)

    ADS  Article  Google Scholar 

  16. P. Augustinský, J. Kunes, Comput. Phys. Commun. 184, 2119 (2013)

    ADS  MathSciNet  Article  Google Scholar 

  17. H. Shinaoka, M. Dolfi, M. Troyer, P. Werner, J. Stat. Mech.: Theor. Exp. 2014, 06012 (2014)

    Article  Google Scholar 

  18. P. Gunacker, M. Wallerberger, E. Gull, A. Hausoel, G. Sangiovanni, K. Held, Phys. Rev. B 92, 155102 (2015)

    ADS  Article  Google Scholar 

  19. H. Shinaoka, Y. Nomura, S. Biermann, M. Troyer, P. Werner, Phys. Rev. B 92, 195126 (2015)

    ADS  Article  Google Scholar 

  20. O. Parcollet, M. Ferrero, T. Ayral, H. Hafermann, I. Krivenko, L. Messio, P. Seth, Comput. Phys. Commun. 196, 398 (2015)

    ADS  Article  Google Scholar 

  21. P. Gunacker, M. Wallerberger, T. Ribic, A. Hausoel, G. Sangiovanni, K. Held, Phys. Rev. B 94, 125153 (2016)

    ADS  Article  Google Scholar 

  22. P. Seth, I. Krivenko, M. Ferrero, O. Parcollet, Comput. Phys. Commun. 200, 274 (2016)

    ADS  Article  Google Scholar 

  23. H. Shinaoka, E. Gull, P. Werner, Comput. Phys. Commun. 215, 128 (2017)

    ADS  MathSciNet  Article  Google Scholar 

  24. A. Kotani, H. Ogasawara, K. Okada, B.T. Thole, G.A. Sawatzky, Phys. Rev. B 40, 65 (1989)

    ADS  Article  Google Scholar 

  25. A. Tanaka, T. Jo, J. Phys. Soc. Jpn. 63, 2788 (1994)

    ADS  Article  Google Scholar 

  26. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    ADS  Article  Google Scholar 

  27. G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Parcollet, C. Marianetti, Rev. Mod. Phys. 78, 865 (2006)

    ADS  Article  Google Scholar 

  28. D. Zgid, E. Gull, G.K.L. Chan, Phys. Rev. B 86, 165128 (2012)

    ADS  Article  Google Scholar 

  29. C. Lin, A.A. Demkov, Phys. Rev. B 88, 035123 (2013)

    ADS  Article  Google Scholar 

  30. Y. Lu, M. Höppner, O. Gunnarsson, M.W. Haverkort, Phys. Rev. B 90, 085102 (2014)

    ADS  Article  Google Scholar 

  31. F.A. Wolf, I.P. McCulloch, U. Schollwöck, Phys. Rev. B 90, 235131 (2014)

    ADS  Article  Google Scholar 

  32. F.A. Wolf, I.P. McCulloch, O. Parcollet, U. Schollwöck, Phys. Rev. B 90, 115124 (2014)

    ADS  Article  Google Scholar 

  33. M. Ganahl, M. Aichhorn, H.G. Evertz, P. Thunström, K. Held, F. Verstraete, Phys. Rev. B 92, 155132 (2015)

    ADS  Article  Google Scholar 

  34. M. Schüler, C. Renk, T.O. Wehling, Phys. Rev. B 91, 235142 (2015)

    ADS  Article  Google Scholar 

  35. P. Wang, G. Cohen, S. Xu, Phys. Rev. B 91, 155148 (2015)

    ADS  Article  Google Scholar 

  36. F.A. Wolf, A. Go, I.P. McCulloch, A.J. Millis, U. Schollwöck, Phys. Rev. X 5, 041032 (2015)

    Google Scholar 

  37. Y.N. Fernández, D. García, K. Hallberg, J. Phys.: Conf. Ser. 568, 042009 (2014)

    Google Scholar 

  38. H. Barman, Phys. Rev. B 94, 045106 (2016)

    ADS  Article  Google Scholar 

  39. H. Li, N.H. Tong, Eur. Phys. J. B 88, 324 (2015)

    ADS  Article  Google Scholar 

  40. S. Motahari, R. Requist, D. Jacob, Phys. Rev. B 94, 235133 (2016)

    ADS  Article  Google Scholar 

  41. D. Bauernfeind, M. Zingl, R. Triebl, M. Aichhorn, H.G. Evertz, arXiv:1612.05587 (2016)

  42. A. Go, A.J. Millis, arXiv:1703.04928 (2017)

  43. K. Held, Adv. Phys. 56, 829 (2007)

    ADS  Article  Google Scholar 

  44. E. Koch, G. Sangiovanni, O. Gunnarsson, Phys. Rev. B 78, 115102 (2008)

    ADS  Article  Google Scholar 

  45. Q. Si, M. Rozenberg, G. Kotliar, A. Ruckenstein, Phys. Rev. Lett. 72, 2761 (1994)

    ADS  Article  Google Scholar 

  46. G. Sangiovanni, A. Toschi, E. Koch, K. Held, M. Capone, C. Castellani, O. Gunnarsson, S.K. Mo, J.W. Allen, H.D. Kim et al., Phys. Rev. B 73, 205121 (2006)

    ADS  Article  Google Scholar 

  47. O. Gunnarsson, G. Sangiovanni, A. Valli, M.W. Haverkort, Phys. Rev. B 82, 233104 (2010)

    ADS  Article  Google Scholar 

  48. C.J. Bolech, S.S. Kancharla, G. Kotliar, Phys. Rev. B 67, 075110 (2003)

    ADS  Article  Google Scholar 

  49. M. Capone, M. Civelli, S.S. Kancharla, C. Castellani, G. Kotliar, Phys. Rev. B 69, 195105 (2004)

    ADS  Article  Google Scholar 

  50. M. Civelli, Ph.D. thesis, Rutgers, The State University of New Jersey, 2007

  51. B. Kyung, S.S. Kancharla, D. Sénéchal, A.M.S. Tremblay, M. Civelli, G. Kotliar, Phys. Rev. B 73, 165114 (2006)

    ADS  Article  Google Scholar 

  52. D. Zgid, G.K.L. Chan, J. Chem. Phys. 134, 094115 (2011)

    ADS  Article  Google Scholar 

  53. M.W. Haverkort, G. Sangiovanni, P. Hansmann, A. Toschi, Y. Lu, S. Macke, Europhys. Lett. 108, 57004 (2014)

    ADS  Article  Google Scholar 

  54. M.W. Haverkort, J. Phys.: Conf. Ser. 712, 012001 (2016)

    Google Scholar 

  55. R.A. Gordon, M.W. Haverkort, S.S. Gupta, G.A. Sawatzky, J. Phys.: Conf. Ser. 190, 012047 (2009)

    Google Scholar 

  56. M.W. Haverkort, M. Zwierzycki, O.K. Andersen, Phys. Rev. B 85, 165113 (2012)

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurits W. Haverkort.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Haverkort, M.W. Exact diagonalization as an impurity solver in dynamical mean field theory. Eur. Phys. J. Spec. Top. 226, 2549–2564 (2017). https://doi.org/10.1140/epjst/e2017-70042-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70042-4