The European Physical Journal Special Topics

, Volume 226, Issue 9, pp 1939–1951 | Cite as

A critical firing rate associated with tonic-to-bursting transitions in synchronized gap-junction coupled neurons

  • Annabelle Shaffer
  • Rosangela Follmann
  • Allison L. Harris
  • Svetlana Postnova
  • Hans Braun
  • Epaminondas RosaJr.
Regular Article
Part of the following topical collections:
  1. Recent Advances in Nonlinear Dynamics and Complex Structures: Fundamentals and Applications


A transition between tonic and bursting neuronal behaviors is studied using a linear chain of three electrically coupled model neurons. Numerical simulations show that, depending on their individual dynamical states, the neurons first synchronize either in a tonic or in a bursting regime. Additionally, a characteristic firing rate, mediating tonic-to-bursting transitions in networked neurons, is found to be associated with a firing rate encountered in the single neuron’s equivalent transition. A few cases describing this peculiar phenomenon are presented.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E.K. Miller, T.J. Buschman, Cortical circuits for the control of attention, Curr. Opin. Neurobiol. 23, 216 (2013)CrossRefGoogle Scholar
  2. 2.
    R. Follmann, E.E.N. Macau, E. Rosa, J.R.C. Piqueira, Phase oscillatory network and visual pattern recognition, IEEE Trans. Neural Netw. Learn. Syst. 26, 1539 (2015)MathSciNetCrossRefGoogle Scholar
  3. 3.
    S. Horvát, R. Gămănu, M. Ercsey-Ravasz, L. Magrou, B. Gămănu, D.C. Van Essen, A. Burkhalter, K. Knoblauch, Z. Toroczkai, H. Kennedy, Spatial embedding and wiring cost constrain the functional layout of the cortical network of rodents and primates, PLoS Biol. 14, e1002512 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Daan, D.G. Beersma, A.A. Borbély. Timing of human sleep: Recovery process gated by a circadian pacemaker, Am. J. Physiol. Regul. Integr. Comp. Phys. 246, R161 (1984)Google Scholar
  5. 5.
    S. Postnova, K. Voigt, H.A. Braun, Neural synchronization at tonic-to-bursting transitions, J. Biol. Phys. 33, 129 (2007)CrossRefGoogle Scholar
  6. 6.
    E. Marder, D. Bucher, Central pattern generators and the control of rhythmic movements, Curr. Biol. 11, R986 (2001)CrossRefGoogle Scholar
  7. 7.
    W. Van Drongelen, H. Koch, C. Marcuccilli, F. Pena, J. Ramirez, Synchrony levels during evoked seizure-like bursts in mouse neocortical slices, J. Neurophysiol. 90, 1571 (2003)CrossRefGoogle Scholar
  8. 8.
    F. Mormann, T. Kreuz, R.G. Andrzejak, P. David, K. Lehnertz, C.E. Elger, Epileptic seizures are preceded by a decrease in synchronization, Epilepsy Res. 53, 173 (2003)CrossRefGoogle Scholar
  9. 9.
    C. Hammond, H. Bergman, P. Brown. Pathological synchronization in parkinson’s disease: networks, models and treatments, Trends Neurosci. 30, 357 (2007)CrossRefGoogle Scholar
  10. 10.
    E.J. Furshpan, D.D. Potter, Mechanism of nerve-impulse transmission at a crayfish synapse, Nature 180, 342 (1957)ADSCrossRefGoogle Scholar
  11. 11.
    E. Marder, G. Gutierrez, M.P. Nusbaum, Complicating connectomes: Electrical coupling creates parallel pathways and degenerate circuit mechanisms, Dev. Neurobiol. 77, 597 (2017)CrossRefGoogle Scholar
  12. 12.
    M. Galarreta, S. Hestrin, Electrical and chemical synapses among parvalbumin fast-spiking gabaergic interneurons in adult mouse neocortex, Proc. Natl. Acad. Sci. 99, 12438 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    P.L. Carlen, F. Skinner, L. Zhang, C. Naus, M. Kushnir, J.L. Perez Velazquez, The role of gap junctions in seizures, Brain Res. Rev. 32, 235 (2000)CrossRefGoogle Scholar
  14. 14.
    M.VL. Bennett, R.S. Zukin, Electrical coupling and neuronal synchronization in the mammalian brain, Neuron. 41, 495 (2004)CrossRefGoogle Scholar
  15. 15.
    N.P. Franks, General anaesthesia: from molecular targets to neuronal pathways of sleep and arousal, Nat. Rev. Neurosci. 9, 370 (2008)CrossRefGoogle Scholar
  16. 16.
    Y.B. Saalmann, S. Kastner, Gain control in the visual thalamus during perception and cognition, Curr. Opin. Neurobiol. 19, 408 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Bahar, Burst-enhanced synchronization in an array of noisy coupled neurons, Fluctuation Noise Lett. 4, L87 (2004)CrossRefGoogle Scholar
  18. 18.
    S.M. Sherman, Tonic and burst firing: Dual modes of thalamocortical relay, Trends Neurosci. 24, 122 (2001)CrossRefGoogle Scholar
  19. 19.
    R.R. Llinás, M. Steriade, Bursting of thalamic neurons and states of vigilance, J. Neurophysiol. 95, 3297 (2006)CrossRefGoogle Scholar
  20. 20.
    A. Shilnikov, G. Cymbalyuk, Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe, Phys. Rev. Lett. 94, 048101 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    F. Fröhlich, M. Bazhenov, Coexistence of tonic firing and bursting in cortical neurons, Phys. Rev. E 74, 031922 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    A. Shaffer, A.L. Harris, R. Follmann, E. Rosa, Bifurcation transitions in gap-junction-coupled neurons, Phys. Rev. E 94, 042301 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    S. Postnova, B. Wollweber, K. Voigt, H. Braun, Impulse pattern in bi-directionally coupled model neurons of different dynamics, BioSyst. 89, 135 (2007)CrossRefGoogle Scholar
  24. 24.
    A.L. Hodgkin, A.F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. 117, 500 (1952)CrossRefGoogle Scholar
  25. 25.
    R. Gilmore, X. Pei, F. Moss, Topological analysis of chaos in neural spike train bursts, Chaos: An Interdiscip. J. Nonlinear Sci. 9, 812 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    M.T. Huber, H.A. Braun, Conductance versus current noise in a neuronal model for noisy subthreshold oscillations and related spike generation, Biosyst. 89, 38 (2007)CrossRefGoogle Scholar
  27. 27.
    S. Postnova, E. Rosa, H.A. Braun, Neurones and synapses for systemic models of psychiatric disorders, Pharmacopsychiatry 43, S82 (2010)CrossRefGoogle Scholar
  28. 28.
    C. Finke, J.A. Freund, E. Rosa Jr, P.H. Bryant, H.A. Braun, U. Feudel, Temperature-dependent stochastic dynamics of the huber-braun neuron model, Chaos: An Interdiscip. J. Nonlinear Sci. 21, 047510 (2011)CrossRefGoogle Scholar
  29. 29.
    S. Postnova, P.A. Robinson, D.D. Postnov, Adaptation to shift work: Physiologically based modeling of the effects of lighting and shifts start time, PloS One 8, e53379 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    E. Rosa, Q.M. Skilling, W. Stein, Effects of reciprocal inhibitory coupling in model neurons, Biosyst. 127, 73 (2015)CrossRefGoogle Scholar
  31. 31.
    M. van den Top, K. Lee, A.D. Whyment, A.M. Blanks, D. Spanswick, Orexigen-sensitive npy/agrp pacemaker neurons in the hypothalamic arcuate nucleus, Nat. Neurosci. 7, 493 (2004)CrossRefGoogle Scholar
  32. 32.
    P. Sah, Ca2+-activated K+ currents in neurones: Types, physiological roles and modulation, Trends Neurosci. 19, 150 (1996)CrossRefGoogle Scholar
  33. 33.
    C. Vergara, R. Latorre, N.V. Marrion, J.P. Adelman, Calcium-activated potassium channels, Curr. Opin. Neurobiol. 8, 321 (1998)CrossRefGoogle Scholar
  34. 34.
    B. Ermentrout, M. Pascal, B. Gutkin, The effects of spike frequency adaptation and negative feedback on the synchronization of neural oscillators, Neural Comput. 13, 1285 (2001)CrossRefzbMATHGoogle Scholar
  35. 35.
    J. Benda, A. Longtin, L. Maler, Spike-frequency adaptation separates transient communication signals from background oscillations, J. Neurosci. 25, 2312 (2005)CrossRefGoogle Scholar
  36. 36.
    J.P. Roach, L.M. Sander, M.R. Zochowski, Memory recall and spike-frequency adaptation, Phys. Rev. E 93, 052307 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    U. Feudel, A. Neiman, X. Pei, W. Wojtenek, H. Braun, M. Huber, F. Moss, Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons, Chaos: An Interdiscipl. J. Nonlinear Sci. 10, 231 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    W. Braun, B. Eckhardt, H.A. Braun, M. Huber, Phase-space structure of a thermoreceptor, Phys. Rev. E 62, 6352 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    O.V. Sosnovtseva, S.D. Postnova, E. Mosekilde, H.A. Braun, Inter-pattern transitions in a noisy bursting cell, Fluctuation Noise Lett. 4, L521 (2004)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Annabelle Shaffer
    • 1
  • Rosangela Follmann
    • 1
    • 2
  • Allison L. Harris
    • 1
  • Svetlana Postnova
    • 3
  • Hans Braun
    • 4
  • Epaminondas RosaJr.
    • 1
    • 2
  1. 1.Department of PhysicsIllinois State UniversityNormalUSA
  2. 2.School of Biological Sciences, Illinois State UniversityNormalUSA
  3. 3.School of Physics, University of SydneyNew South Wales, SydneyAustralia
  4. 4.Institute of Physiology, University of MarburgMarburgGermany

Personalised recommendations