Skip to main content
Log in

Fractional quantization of charge and spin in topological quantum pumps

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Topological quantum pumps are topologically equivalent to the quantum Hall state: In these systems, the charge pumped during each pumping cycle is quantized and coincides with the Chern invariant. However, differently from quantum Hall insulators, quantum pumps can exhibit novel phenomena such as the fractional quantization of the charge transport, as a consequence of their distinctive symmetries in parameter space. Here, we report the analogous fractional quantization of the spin transport in a topological spin pump realized in a one-dimensional lattice via a periodically modulated Zeeman field. In the proposed model, which is a spinfull generalization of the Harper-Hofstadter model, the amount of spin current pumped during well-defined fractions of the pumping cycle is quantized as fractions of the spin Chern number. This fractional quantization of spin is topological, and is a direct consequence of the additional symmetries ensuing from the commensuration of the periodic field with the underlying lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators, Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  2. X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors, Rev. Mod. Phys. 83, 1057 (2011)

    Article  ADS  Google Scholar 

  3. K.v. Klitzing, G. Dorda, M. Pepper, New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance, Phys. Rev. Lett. 45, 494 (1980)

    Article  ADS  Google Scholar 

  4. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential, Phys. Rev. Lett. 49, 405 (1982)

    Article  ADS  Google Scholar 

  5. C.L. Kane, E.J. Mele, Quantum spin Hall effect in graphene, Phys. Rev. Lett. 95, 226801 (2005)

    Article  ADS  Google Scholar 

  6. C.L. Kane, E.J. Mele, Z2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  7. B.A. Bernevig, S.-C. Zhang, Quantum spin Hall effect, Phys. Rev. Lett. 96, 106802 (2006)

    Article  ADS  Google Scholar 

  8. D.N. Sheng, Z.Y. Weng, L. Sheng, F.D.M. Haldane, Quantum spin-Hall effect and topologically invariant Chern numbers, Phys. Rev. Lett. 97, 036808 (2006)

    Article  ADS  Google Scholar 

  9. D.J. Thouless, Quantization of particle transport, Phys. Rev. B 27, 6083 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  10. Q. Niu, D.J. Thouless, Quantised adiabatic charge transport in the presence of substrate disorder and many-body interaction, J. Phys. A: Math. Gen. 17, 2453 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. L. Fu, C.L. Kane, Time reversal polarization and a Z2 adiabatic spin pump, Phys. Rev. B 74, 195312 (2006)

    Article  ADS  Google Scholar 

  12. R. Shindou, Quantum spin pump in S=1/2 antiferromagnetic chains – holonomy of phase operators in sine-Gordon theory, J. Phys. Soc. Jpn. 74, 1214 (2005)

    Article  ADS  MATH  Google Scholar 

  13. R. Citro, F. Romeo, N. Andrei, Electrically controlled pumping of spin currents in topological insulators, Phys. Rev. B 84, 161301 (2011)

    Article  ADS  Google Scholar 

  14. F. Mei, S.-L. Zhu, Z.-M. Zhang, C.H. Oh, N. Goldman, Simulating Z2 topological insulators with cold atoms in a one-dimensional optical lattice, Phys. Rev. A 85, 013638 (2012)

    Article  ADS  Google Scholar 

  15. D. Ferraro, G. Dolcetto, R. Citro, F. Romeo, M. Sassetti, Spin current pumping in helical Luttinger liquids, Phys. Rev. B 87, 245419 (2013)

    Article  ADS  Google Scholar 

  16. C.Q. Zhou, Y.F. Zhang, L. Sheng, R. Shen, D.N. Sheng, D.Y. Xing, Proposal for a topological spin Chern pump, Phys. Rev. B 90, 085133 (2014)

    Article  ADS  Google Scholar 

  17. W.Y. Deng, W. Luo, H. Geng, M.N. Chen, L. Sheng, D.Y. Xing, Non-adiabatic topological spin pumping, New J. Phys. 17, 103018 (2015)

    Article  ADS  Google Scholar 

  18. M.N. Chen, L. Sheng, R. Shen, D.N. Sheng, D.Y. Xing, Spin Chern pumping from the bulk of two-dimensional topological insulators, Phys. Rev. B 91, 125117 (2015)

    Article  ADS  Google Scholar 

  19. M. Lewenstein, A. Sanpera, V. Ahufinger, B. Damski, A. Sen(De), U. Sen, Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond, Adv. Phys. 56, 243 (2007)

    Article  ADS  Google Scholar 

  20. I. Bloch, J. Dalibard, W. Zwerger, Many-body physics with ultracold gases, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  21. J. Dalibard, F. Gerbier, G. Juzeliūnas, P. Öhberg, Colloquium: Artificial gauge potentials for neutral atoms, Rev. Mod. Phys. 83, 1523 (2011)

    Article  ADS  Google Scholar 

  22. M. Aidelsburger, M. Atala, S. Nascimbène, S. Trotzky, Y.-A. Chen, I. Bloch, Experimental realization of strong effective magnetic fields in an optical lattice, Phys. Rev. Lett. 107, 255301 (2011)

    Article  ADS  Google Scholar 

  23. K. Jiménez-García, L.J. LeBlanc, R.A. Williams, M.C. Beeler, A.R. Perry, I.B. Spielman, Peierls substitution in an engineered lattice potential, Phys. Rev. Lett. 108, 225303 (2012)

    Article  ADS  Google Scholar 

  24. J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein, K. Sengstock, P. Windpassinger, Tunable gauge potential for neutral and spinless particles in driven optical lattices, Phys. Rev. Lett. 108, 225304 (2012)

    Article  ADS  Google Scholar 

  25. Y.V. Kartashov, V.V. Konotop, F.K. Abdullaev, Gap solitons in a spin-orbit-coupled Bose-Einstein condensate, Phys. Rev. Lett. 111, 060402 (2013)

    Article  ADS  Google Scholar 

  26. N. Goldman, G. Juzeliūnas, P. Ohberg, I.B. Spielman, Light-induced gauge fields for ultracold atoms, Rep. Prog. Phys. 77, 126401 (2014)

    Article  ADS  Google Scholar 

  27. L.-J. Lang, X. Cai, S. Chen, Edge states and topological phases in one-dimensional optical superlattices, Phys. Rev. Lett. 108, 220401 (2012)

    Article  ADS  Google Scholar 

  28. M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Realization of the Hofstadter Hamiltonian with ultracold atoms in optical lattices, Phys. Rev. Lett. 111, 185301 (2013)

    Article  ADS  Google Scholar 

  29. H. Miyake, G.A. Siviloglou, C.J. Kennedy, W.C. Burton, W. Ketterle, Realizing the Harper Hamiltonian with laser-assisted tunneling in optical lattices, Phys. Rev. Lett. 111, 185302 (2013)

    Article  ADS  Google Scholar 

  30. M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J.T. Barreiro, S. Nascimbene, N.R. Cooper, I. Bloch, N. Goldman, Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms, Nat. Phys. 11, 162 (2015)

    Article  Google Scholar 

  31. M. Lohse, C. Schweizer, O. Zilberberg, M. Aidelsburger, I. Bloch, A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice, Nat. Phys. 12, 350 (2016)

    Article  Google Scholar 

  32. S. Nakajima, T. Tomita, S. Taie, T. Ichinose, H. Ozawa, L. Wang, M. Troyer, Y. Takahashi, Topological Thouless pumping of ultracold fermions, Nat. Phys. 12, 296 (2016)

    Article  Google Scholar 

  33. R. Citro, Ultracold atoms: A topological charge pump, Nat. Phys. 12, 288 (2016)

    Article  Google Scholar 

  34. C. Schweizer, M. Lohse, R. Citro, I. Bloch, Spin pumping and measurement of spin currents in optical superlattices, Phys. Rev. Lett. 117, 170405 (2016)

    Article  ADS  Google Scholar 

  35. P.L. e.S. Lopes, P. Ghaemi, S. Ryu, T.L. Hughes, Competing adiabatic Thouless pumps in enlarged parameter spaces, Phys. Rev. B 94, 235160 (2016)

    Article  ADS  Google Scholar 

  36. T.-S. Zeng, W. Zhu, D.N. Sheng, Fractional charge pumping of interacting bosons in one-dimensional superlattice, Phys. Rev. B 94, 235139 (2016)

    Article  ADS  Google Scholar 

  37. F. Ronetti, M. Carrega, D. Ferraro, J. Rech, T. Jonckheere, T. Martin, M. Sassetti, Polarized heat current generated by quantum pumping in two-dimensional topological insulators, Phys. Rev. B 95, 115412 (2017)

    Article  ADS  Google Scholar 

  38. S. Gangadharaiah, L. Trifunovic, D. Loss, Localized end states in density modulated quantum wires and rings, Phys. Rev. Lett. 108, 136803 (2012)

    Article  ADS  Google Scholar 

  39. J.-H. Park, G. Yang, J. Klinovaja, P. Stano, D. Loss, Fractional boundary charges in quantum dot arrays with density modulation, Phys. Rev. B 94, 075416 (2016)

    Article  ADS  Google Scholar 

  40. P. Marra, R. Citro, C. Ortix, Fractional quantization of the topological charge pumping in a one-dimensional superlattice, Phys. Rev. B 91, 125411 (2015)

    Article  ADS  Google Scholar 

  41. D.-W. Zhang, Z.-D. Wang, S.-L. Zhu, Relativistic quantum effects of Dirac particles simulated by ultracold atoms, Front. Phys. 7, 31 (2012)

    Article  Google Scholar 

  42. D.-W. Zhang, L.-B. Shao, Z.-Y. Xue, H. Yan, Z.D. Wang, S.-L. Zhu, Particle-number fractionalization of a one-dimensional atomic Fermi gas with synthetic spin-orbit coupling, Phys. Rev. A 86, 063616 (2012)

    Article  ADS  Google Scholar 

  43. D.-W. Zhang, S.-L. Zhu, Z.D. Wang, Simulating and exploring Weyl semimetal physics with cold atoms in a two-dimensional optical lattice, Phys. Rev. A 92, 013632 (2015)

    Article  ADS  Google Scholar 

  44. D.-W. Zhang, Y.X. Zhao, R.-B. Liu, Z.-Y. Xue, S.-L. Zhu, Z.D. Wang, Quantum simulation of exotic PT-invariant topological nodal loop bands with ultracold atoms in an optical lattice, Phys. Rev. A 93, 043617 (2016)

    Article  ADS  Google Scholar 

  45. D. Xiao, M.-C. Chang, Q. Niu, Berry phase effects on electronic properties, Rev. Mod. Phys. 82, 1959 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Y.E. Kraus, Z. Ringel, O. Zilberberg, Four/dimensional quantum Hall effect in a two-dimensional quasicrystal, Phys. Rev. Lett. 111, 226401 (2013)

    Article  ADS  Google Scholar 

  47. A. Celi, P. Massignan, J. Ruseckas, N. Goldman, I.B. Spielman, G. Juzeliūnas, M. Lewenstein, Synthetic gauge fields in synthetic dimensions, Phys. Rev. Lett. 112, 043001 (2014)

    Article  ADS  Google Scholar 

  48. P. Marra, M. Cuoco, Pinning Majorana states to domain walls in amplitude-modulated magnetic textures, arXiv:1606.08450 (2016)

  49. D.R. Hofstadter, Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields, Phys. Rev. B 14, 2239 (1976)

    Article  ADS  Google Scholar 

  50. P.G. Harper, Single band motion of conduction electrons in a uniform magnetic field, Proc. Phys. Soc. A 68, 874 (1955)

    Article  ADS  MATH  Google Scholar 

  51. D. Osadchy, J.E. Avron, Hofstadter butterfly as quantum phase diagram, J. Math. Phys. 42, 5665 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. D.-W. Zhang, S. Cao, Measuring the spin Chern number in time-reversal-invariant Hofstadter optical lattices, Phys. Lett. A 380, 3541 (2016)

    Article  ADS  Google Scholar 

  53. D. Prezzi, D. Eom, K.T. Rim, H. Zhou, S. Xiao, C. Nuckolls, T.F. Heinz, G.W. Flynn, M.S. Hybertsen, Edge structures for nanoscale graphene islands on Co(0001) surfaces, ACS Nano 8, 5765 (2014)

    Article  Google Scholar 

  54. L.L. Patera, F. Bianchini, G. Troiano, C. Dri, C. Cepek, M. Peressi, C. Africh, G. Comelli, Temperature-driven changes of the graphene edge structure on Ni(111): Substrate vs hydrogen passivation, Nano Letters 15, 56 (2015)

    Article  ADS  Google Scholar 

  55. J. Klinovaja, P. Stano, D. Loss, Transition from fractional to Majorana fermions in Rashba nanowires, Phys. Rev. Lett. 109, 236801 (2012)

    Article  ADS  Google Scholar 

  56. S. Nadj-Perge, I.K. Drozdov, B.A. Bernevig, A. Yazdani, Proposal for realizing Majorana fermions in chains of magnetic atoms on a superconductor, Phys. Rev. B 88, 020407 (2013)

    Article  ADS  Google Scholar 

  57. B. Braunecker, P. Simon, Interplay between classical magnetic moments and superconductivity in quantum one/dimensional conductors: toward a self/sustained topological Majorana phase, Phys. Rev. Lett. 111, 147202 (2013)

    Article  ADS  Google Scholar 

  58. F. Pientka, L.I. Glazman, F. von Oppen, Topological superconducting phase in helical Shiba chains, Phys. Rev. B 88, 155420 (2013)

    Article  ADS  Google Scholar 

  59. J. Klinovaja, P. Stano, A. Yazdani, D. Loss, Topological superconductivity and majorana fermions in RKKY systems, Phys. Rev. Lett. 111, 186805 (2013)

    Article  ADS  Google Scholar 

  60. M.M. Vazifeh, M. Franz, Self-organized topological state with Majorana fermions, Phys. Rev. Lett. 111, 206802 (2013)

    Article  ADS  Google Scholar 

  61. Y. Kim, M. Cheng, B. Bauer, R.M. Lutchyn, S. Das Sarma, Helical order in one-dimensional magnetic atom chains and possible emergence of Majorana bound states, Phys. Rev. B 90, 060401 (2014)

    Article  ADS  Google Scholar 

  62. A. Saha, D. Rainis, R.P. Tiwari, D. Loss, Quantum charge pumping through fractional fermions in charge density modulated quantum wires and Rashba nanowires, Phys. Rev. B 90, 035422 (2014)

    Article  ADS  Google Scholar 

  63. A. Tadjine, G. Allan, C. Delerue, From lattice Hamiltonians to tunable band structures by lithographic design, Phys. Rev. B 94, 075441 (2016)

    Article  ADS  Google Scholar 

  64. M. Polini, F. Guinea, M. Lewenstein, H.C. Manoharan, V. Pellegrini, Artificial honeycomb lattices for electrons, atoms and photons, Nat. Nano. 8, 625 (2013)

    Article  Google Scholar 

  65. N.R. Cooper, A.M. Rey, Adiabatic control of atomic dressed states for transport and sensing, Phys. Rev. A 92, 021401 (2015)

    Article  ADS  Google Scholar 

  66. L. Taddia, E. Cornfeld, D. Rossini, L. Mazza, E. Sela, R. Fazio, Topological fractional pumping with alkaline-earth(-like) ultracold atoms, arXiv:1607.07842 (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pasquale Marra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marra, P., Citro, R. Fractional quantization of charge and spin in topological quantum pumps. Eur. Phys. J. Spec. Top. 226, 2781–2791 (2017). https://doi.org/10.1140/epjst/e2017-70012-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-70012-4

Navigation