The European Physical Journal Special Topics

, Volume 226, Issue 10, pp 2299–2310

Kac limit and thermodynamic characterization of stochastic dynamics driven by Poisson-Kac fluctuations

  • Massimiliano Giona
  • Antonio Brasiello
  • Silvestro Crescitelli
Regular Article
Part of the following topical collections:
  1. Aspects of Statistical Mechanics and Dynamical Complexity


We analyze the thermodynamic properties of stochastic differential equations driven by smooth Poisson-Kac fluctuations, and their convergence, in the Kac limit, towards Wiener-driven Langevin equations. Using a Markovian embedding of the stochastic work variable, it is proved that the Kac-limit convergence implies a Stratonovich formulation of the limit Langevin equations, in accordance with the Wong-Zakai theorem. Exact moment analysis applied to the case of a purely frictional system shows the occurrence of different regimes and crossover phenomena in the parameter space.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1988)Google Scholar
  2. 2.
    H.C. Öttinger, Stochastic Processes in Polymeric Fluids (Springer-Verlag, Berlin, 1996)Google Scholar
  3. 3.
    U. Seifert, Rep. Prog. Phys. 75, 126001 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    R. Klages, W. Justand, C. Jarzynski, Nonequilibrium Statistical Physics of Small Systems (Wiley-VCH, Weinheim, 2012)Google Scholar
  5. 5.
    J. Kurchan, J. Phys. A 31, 3719 (1998)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    K. Falconer The Geometry of Fractal Sets (Cambridge University Press, Cambridge, 1986)Google Scholar
  7. 7.
    M. Kac, Rocky Mount. J. Math. 4, 497 (1974)CrossRefGoogle Scholar
  8. 8.
    M. Giona, A. Brasiello, S. Crescitelli, J. Non-Equil. Thermodyn. 41, 107 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    G.H. Weiss, Physica A 311, 381 (2002)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    I. Bena, Int. J. Mod. Phys. B 20, 2825 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    W. Horsthemke, R. Lefever Noise-Induced Transitions (Springer-Verlag, Berlin, 2006)Google Scholar
  12. 12.
    M. Colangeli, A. De Masi, E. Presutti, Phys. Lett. A 350, 1710 (2016)ADSCrossRefGoogle Scholar
  13. 13.
    M. Giona, A. Brasiello, S. Crescitelli, arXiv:1609.07607 (2016)
  14. 14.
    A. Brasiello, M. Giona, S. Crescitelli, J. Non-Equil. Thermod. 41, 115 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    M. Giona, A. Brasiello, S. Crescitelli, Europhys. Lett. 112, 30001 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    M. Giona, A. Brasiello, S. Crescitelli, Physica A 450, 148 (2016)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    P. Siegle, I. Goychuk, P. Talkner, P. Hänggi, Phys. Rev. E 81, 011136 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    A. Janssen, J. Theor. Prob. 3, 349 (1990)CrossRefGoogle Scholar
  19. 19.
    A.D. Kolesnik, Bul. Acad. Stinte Rep. Moldova Math. 3, 41 (2003)Google Scholar
  20. 20.
    E. Wong, M. Zakai, Int. J. Eng. Sci. 3, 213 (1965)CrossRefGoogle Scholar
  21. 21.
    E. Wong, M. Zakai, Ann. Math. Stat. 36, 1560 (1965)CrossRefGoogle Scholar
  22. 22.
    K. Sekimoto, Prog. Theor. Phys. Suppl. 130, 17 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    S. Ciliberto, A. Imparato, A Naert, M. Tanase, J. Stat. Mech. 12, P12014 (2013)CrossRefGoogle Scholar
  24. 24.
    P.K. Friz, M. Hairer, A Course on Rough Paths (Springer, New York, 2014)Google Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  • Massimiliano Giona
    • 1
  • Antonio Brasiello
    • 2
  • Silvestro Crescitelli
    • 3
  1. 1.Dipartimento di Ingegneria Chimica DICMA Facoltà di Ingegneria, La Sapienza Università di RomaRomaItaly
  2. 2.Dipartimento di Ingegneria Industriale Università degli Studi di SalernoFisciano (SA)Italy
  3. 3.Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale Università degli Studi di Napoli “Federico II”NapoliItaly

Personalised recommendations