The European Physical Journal Special Topics

, Volume 226, Issue 7, pp 1603–1621 | Cite as

A resolution insensitive to geometrical aberrations by using incoherent illumination and interference imaging

  • Peng Xiao
  • Mathias Fink
  • Amir H. Gandjbakhche
  • A. Claude BoccaraEmail author
Open Access
Regular Article
Part of the following topical collections:
  1. From Ill-condensed Matter to Mesoscopic Wave Propagation


This contribution is another opportunity to acknowledge the influence of Roger Maynard on our research work when he pushed one of us (ACB) to explore the field of waves propagating in complex media rather than limiting ourselves to the wavelength scale of thermal waves or near field phenomena. Optical tomography is used for imaging in-depth scattering media such as biological tissues. Optical coherence tomography (OCT) plays an important role in imaging biological samples. Coupling OCT with adaptive optics (AO) in order to correct eye aberrations has led to cellular imaging of the retina. By using our approach called Full-Field OCT (FFOCT) we show that, with spatially incoherent illumination, the width of the point-spread function (PSF) that governs the resolution is not affected by aberrations that induce only a reduction of the signal level. We will describe our approach by starting with the PSF experimental data followed by a simple theoretical analysis, and numerical calculations. Finally full images obtained through or inside scattering and aberrating media will be shown.


  1. 1.
    T. Wilson, in Confocal Microscopy (Academic Press: London, 1990), Vol. 426, pp. 1–64Google Scholar
  2. 2.
    W. Denk, J.H. Strickler, W.W. Webb, Two-photon laser scanning fluorescence microscopy, Science 248, 73 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography, Science 254, 1178 (1991)ADSCrossRefGoogle Scholar
  4. 4.
    N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, J.F. de Boer, In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography, Opt. Lett. 29, 480 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography, Opt. Express 14, 3225 (2006)ADSCrossRefGoogle Scholar
  6. 6.
    B.M. Hoeling, A.D. Fernandez, R.C. Haskell, E. Huang, W.R. Myers, D.C. Petersen, S.E. Ungersma, R.Wang, M.E. Williams, S.E. Fraser, An optical coherence microscope for 3-dimensional imaging in developmental biology, Opt. Express 6, 136 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Zhang, J. Rha, R.S. Jonnal, D.T. Miller, Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina, Opt. Express 13, 4792 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    S. Bourquin, P. Seitz, R.P. Salathé, Optical coherence topography based on a two-dimensional smart detector array, Opt. Lett. 26, 512 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    E. Bordenave, E. Abraham, G. Jonusauskas, N. Tsurumachi, J. Oberlé, C. Rullière, P.E. Minot, M. Lassègues, J.E. Surlève Bazeille, Wide-field optical coherence tomography: imaging of biological tissues, Appl. Opt. 41, 2059 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. Salathé, Video-rate three-dimensional optical coherence tomography, Opt. Express 10, 429 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    B. Karamata, P. Lambelet, M. Laubscher, R.P. Salathé, T. Lasser, Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography, Opt. Lett. 29, 736 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    L. Vabre, A. Dubois, A.C. Boccara, Thermal-light full-field optical coherence tomography, Opt. Lett., 27, 530 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    LLTech SAS, France,
  14. 14.
    P. Xiao, M. Fink, A.C. Boccara, Full-field spatially incoherent illumination interferometry: a spatial resolution almost insensitive to aberrations, Opt. Lett. 41, 3920 (2016)ADSCrossRefGoogle Scholar
  15. 15.
    M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (CUP Archive, 2000)Google Scholar
  16. 16.
    J.W. Goodman, Introduction to Fourier optics (Roberts and Company Publishers, 2005)Google Scholar
  17. 17.
    C.W. McCutchen, Generalized Source and the van Cittert–Zernike Theorem: A Study of the Spatial Coherence Required for Interferometry, J. Opt. Soc. Am. 56, 727 (1966)ADSCrossRefGoogle Scholar
  18. 18.
    H. Babcock, The possibility of compensating atmospheric seeing, Pub. Astr. Soc. Pac. 65, 229 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    G. Rousset, J.C. Fontanella, P. Kern, F. Rigaut, First diffraction-limited astronomical images with adaptive optics, Astron. Astrophys. 230, L29 (1990)ADSGoogle Scholar
  20. 20.
    J.A. Kubby, Adaptive Optics for Biological Imaging (CRC Press, 2013)Google Scholar
  21. 21.
    P. Godara, A.M. Dubis, A. Roorda, J.L. Duncan, J. Carroll, Adaptive optics retinal imaging: emerging clinical applications, Optom. Vis. Sci. 87, 930 (2010)CrossRefGoogle Scholar
  22. 22.
    J. Porter, H.M. Queener, J.E. Lin, K. Thorn, A. Awwal (ed.), Adaptive Optics for Vision Science (John Wiley & Sons, Inc., 2006)Google Scholar
  23. 23.
    D.R. Williams, Imaging single cells in the living retina, Vision Res. 51, 1379 (2011)CrossRefGoogle Scholar
  24. 24.
    J. Liang, D.R. Williams, D.T. Miller, Supernormal vision and high-resolution retinal imaging through adaptive optics, J. Opt. Soc. Am. A 14, 2884 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    A. Roorda, F. Romero-Borja, W. Donnelly III, H. Queener, T. Hebert, M. Campbell, Adaptive optics scanning laser ophthalmoscopy, Opt. Express 10, 405 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Y. Zhang, A Roorda, Evaluating the lateral resolution of the adaptive optics scanning laser ophthalmoscope, J. Biomed. Opt. 11, 14002 (2006)CrossRefGoogle Scholar
  27. 27.
    D. Merino, J.L. Duncan, P. Tirubeedhula, A. Roorda, Observation of cone and rod photoreceptors in normal subjects and patients using a new generation adaptive optics scanning laser ophthalmoscope, Biomed. Opt. Express 2, 2189 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Zhang, B. Cense, J. Rha, R.S. Jonnal, W. Gao, R.J. Zawadzki, J.S. Werner, S. Jone, S. Olivier, D.T. Miller, High-speed volumetric imaging of cone photoreceptoes with adaptive optics spectral-domain optical coherence tomography, Opt. Express 14, 4380 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    R.J. Zawadzki, S.M. Jones, S.S. Olivier, M. Zhao, B.A. Bower, J.A. Izatt, S. Choi, S. Laut, J.S. Werner, Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging, Opt. Express 13, 8532 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    O.P. Kocaoglu, S. Lee, R.S. Jonnal, Q. Wang, A.E. Herde, J.C. Derby, W. Gao, D.T. Miller, Imaging cone photoreceptors in three dimensions and in time using ultrahigh resolution optical coherence tomography with adaptive optics, Biomed. Opt. Express 2, 748 (2011)CrossRefGoogle Scholar
  31. 31.
    Y. Zhang, J. Rha, R. Jonnal, D. Miller, Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina, Opt. Express 13, 4792 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    E.J. Fernández, B. Hermann, B. Povazay, A. Unterhuber, H. Sattmann, B. Hofer, P.K. Ahnelt, W. Drexler, Ultrahigh resolution optical coherence tomography and pancorrection for cellular imaging of the living human retina, Opt. Express 16, 11083 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    E.J. Fernández, B. Povazay, B. Hermann, A. Unterhuber, H. Sattmann, P.M. Prieto, R. Leitgeb, P. Ahnelt, P. Artal, W. Drexler, Three-dimensional AO ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator, Vision Res. 45, 3432 (2005)CrossRefGoogle Scholar
  34. 34.
    O.P. Kocaoglu, R.D. Ferguson, R.S. Jonnal, Z. Liu, Q. Wang, D.X. Hammer, D.T. Miller, Adaptive optics optical coherence tomography with dynamic retinal tracking, Biomed. Opt. Express 5, 2262 (2014)CrossRefGoogle Scholar
  35. 35.
    K.S.K. Wong, Y. Jian, M. Cua, S. Bonora, R.J. Zawadzki, M.V. Sarunic, In vivo imaging of human photoreceptor mosaic with wavefront sensorless adaptive optics optical coherence tomography, Biomed. Opt. Express 6, 580 (2015)CrossRefGoogle Scholar
  36. 36.
    M. Rueckel, J.A. Mack-Bucher, W. Denk, Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing, PNAS 103, 17137 (2006)ADSCrossRefGoogle Scholar
  37. 37.
    S.H. Lee, J.S. Werner, R.J. Zawadzki, Improved visualization of outer retinal morphology with aberration cancelling reflective optical design for adaptive optics – optical coherence tomography, Biomed. Opt. Express 4, 2508 (2013)CrossRefGoogle Scholar
  38. 38.
    J. Porter, A. Guirao, I.G. Cox, D.R. Williams, Monochromatic aberrations of the human eye in a large population, JOSA A 18, 1793 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    J.F. Castejón-Mochón, N. López-Gil, A. Benito, P. Artal, Ocular wave-front aberration statistics in a normal young population, Vision Res. 42, 1611 (2002)CrossRefGoogle Scholar
  40. 40.
    X. Hong, L. Thibos, A. Bradley, D. Miller, X. Cheng, N. Himebaugh, Statistics of aberrations among healthy young eyes, in Vision Science and its Applications, edited by A. Sawchuk, Vol. 53 of OSA Trends in Optics and Photonics (Optical Society of America, 2001), p. SuA5Google Scholar
  41. 41.
    D3128 Spatial Light Modulator, Meadowlark Optics,
  42. 42.
    G.D. Love, Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator, Appl. Opt. 36, 1517 (1997)ADSCrossRefGoogle Scholar
  43. 43.
    A. Vyas, M.B. Roopashree, R.K. Banyal, B.R. Prasad, Spatial Light Modulator for wavefront correction, arXiv:0909.3413 (2009)
  44. 44.
    L.N. Thibos, A. Bradley, Use of liquid-crystal adaptive-optics to alter the refractive state of the eye, Optometry Vision Sci. 74, 581 (1997)CrossRefGoogle Scholar
  45. 45.
    F. Vargas-Martin, P.M. Prieto, P. Artal, Correction of the aberrations in the human eye with a liquid-crystal spatial light modulator: limits to performance, JOSA A 15, 2552 (1998)ADSCrossRefGoogle Scholar
  46. 46.
    D.T. Miller, L.N. Thibos, X. Hong, Requirements for segmented correctors for diffraction-limited performance in the human eye, Opt. Express 13, 275 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    P.N. Marsh, D. Burns, J.M. Girkin, Practical implementation of adaptive optics in multiphoton microscopy, Opt. Express 11, 1123 (2003)ADSCrossRefGoogle Scholar
  48. 48.
    L. Sherman, J.Y. Ye, O. Albert, T.B. Norris, Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror, J. Microsc-Oxford 206, 65 (2002)MathSciNetCrossRefGoogle Scholar
  49. 49.
    S. Zommer, E.N. Ribak, S.G. Lipson, J. Adler, Simulated annealing in ocular adaptive optics, Opt. Lett. 31, 939 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    N. Ji, D.E. Milkie, E. Betzig, Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues, Nat. Meth. 7, 141 (2009)CrossRefGoogle Scholar
  51. 51.
    A. Dubois, G. Moneron, A.C. Boccara, Thermal-light full-field optical coherence tomography in the 1.2μm wavelength region. Opt. Commun. 266, 738 (2006)Google Scholar
  52. 52.
    S. Labiau, G. David, S. Gigan, A.C. Boccara, Defocus test and defocus correction in full-field optical coherence tomography, Opt. Lett. 34, 1576 (2009)ADSCrossRefGoogle Scholar
  53. 53.
    J. Binding, J.B. Arous, J. Leger, S. Gigan, C. Boccara, L. Bourdieu, Brian refractive index measured in vivo with high-NA defocus-corrected full-field OCT and consequences for two-photon microscopy, Opt. Express 19, 4833 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    J. Wang, J. Leger, J. Binding, A.C. Boccara, S. Gigan, L. Bourdieu, Measuring aberrations on the rat brain by coherence-gated wavefront sensing using a Linnik interferometer, Biomed. Opt. Expess 3, 2510 (2012)CrossRefGoogle Scholar
  55. 55.
    P. Xiao, M. Fink, A.C. Boccara, Adapive optics full-field optical coherence tomography, submitted to Journal of Biomedical OpticsGoogle Scholar
  56. 56.
    R.J. Noll, Zernike polynomials and atmospheric turbulence, JOsA 66, 207 (1976)ADSCrossRefGoogle Scholar
  57. 57.
    G. Dai, Wavefront Optics for Vision Correction (SPIE Press, 2008)Google Scholar
  58. 58.
    S. Bonora, R. J. Zawadzki, Wavefront sensorless modal deformable mirror correction in adaptive optics: optical coherence tomography, Opt. Lett. 38, 4801 (2013)ADSCrossRefGoogle Scholar
  59. 59.
    D. Debarre, M.J. Booth, T. Wilson, Image based adaptive optics through optimization of low spatial frequencies, Opt. Express 15, 8176 (2007)ADSCrossRefGoogle Scholar
  60. 60.
    J. Mertz, H. Paudel, T.G. Bifano, Field of view advantage of conjugate adaptive optics in microscopy applications, Appl. Opt. 54, 3498 (2015)ADSCrossRefGoogle Scholar
  61. 61.
    C.K. Hitzenberger, A. Baumgartner, W. Drexler, A.F. Fercher, Dispersion effects in partial coherence interferometry: implications for intraocular ranging, J. Biomed. Opt. 4, 144 (1999)ADSCrossRefGoogle Scholar
  62. 62.
    ROWE Technical Design, Inc.,

Copyright information

© The Author(s) 2017

Open Access This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institut Langevin, ESPCI Paris, PSL Research UniversityParisFrance
  2. 2.National Institute of Child Health and Human Development, National Institutes of HealthBethesda, MDUSA

Personalised recommendations