Skip to main content
Log in

Effervescence in champagne and sparkling wines: From bubble bursting to droplet evaporation

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

When a bubble reaches an air-liquid interface, it ruptures, projecting a multitude of tiny droplets in the air. Across the oceans, an estimated 1018 to 1020 bubbles burst every second, and form the so called sea spray, a major player in earth’s climate system. At a smaller scale, in a glass of champagne about a million bubbles nucleate on the wall, rise towards the surface and burst, giving birth to a particular aerosol that holds a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in simple liquids, we depict each step of this effervescence, from bubble bursting to drop evaporation. In particular, we propose simple scaling laws for the jet velocity and the top drop size. We unravel experimentally the intricate roles of bubble shape, capillary waves, gravity, and liquid properties in the jet dynamics and the drop detachment. We demonstrate how damping action of viscosity produces faster and smaller droplets and more generally how liquid properties enable to control the bubble bursting aerosol characteristics. In this context, the particular case of Champagne wine aerosol is studied in details and the key features of this aerosol are identified. We demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. Conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of aerosol characteristics and flavor release during sparkling wine tasting, a major issue of the sparkling wine industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Liger-Belair, G. Polidori, P. Jeandet, Chem. Soc. Rev. 37, 2490 (2008)

    Article  Google Scholar 

  2. D.C. Blanchard, L.D. Syzdek, J. Geophys. Res. 93, 3649 (1988)

    Article  ADS  Google Scholar 

  3. J. Wu, J. Phys. Oceanogr. 31, 3249 (2001)

    Article  ADS  Google Scholar 

  4. H. Lhuissier, E. Villermaux, J. Fluid Mech. 696, 5 (2012)

    Article  ADS  Google Scholar 

  5. L. Duchemin, S. Popinet, C. Josserand, S. Zaleski, Phys. Fluids 14, 3000 (2002)

    Article  ADS  Google Scholar 

  6. J.S. Lee, B.M. Weon, S.J. Park, J.H. Je, K. Fezzaa, W.-K. Lee, Nat Commun, 2 (2011)

  7. E. Ghabache, A. Antkowiak, C. Josserand, T. Séon, Phys. Fluids (1994-present) 26, (2014a)

  8. D.C. Blanchard, Progress In Oceanography 1, 73 (1963)

    Article  ADS  Google Scholar 

  9. D.E. Spiel, J. Geophys. Res. 99, 10289 (1994)

    Article  ADS  Google Scholar 

  10. E. Ghabache, T. Séon, Phys. Rev. Fluids 1 (2016)

  11. F.J. Resch, J.S. Darrozes, G.M. Afeti, J. Geophys. Res. 91(C1), 1019 (1986)

    Article  ADS  Google Scholar 

  12. A.H. Woodcock, C.F. Kientzler, A.B. Arons, D.C. Blanchard, Nature 172, 1144 (1953)

    Article  ADS  Google Scholar 

  13. F. MacIntyre, J. Geophys. Res. 77, 5211 (1972)

    Article  ADS  Google Scholar 

  14. J. Wu, Science 212, 324 (1981)

    Article  ADS  Google Scholar 

  15. D.E. Spiel, J. Geophys. Res. 102, 5815 (1997)

    Article  ADS  Google Scholar 

  16. E.R. Lewis, S.E. Schwartz, Sea Salt Aerosol Production. Mechanisms, Methods, Measurements, and Models, geophysical monograph 152 ed. (American Geophysical Union, Washington, DC, 2004)

  17. C.D. O’Dowd, G. de Leeuw, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 365, 1753 (2007)

    Article  ADS  Google Scholar 

  18. C.D. O’Dowd, M.C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y.J. Yoon, J.-P. Putaud, Nature 431, 676 (2004)

    Article  ADS  Google Scholar 

  19. W. Barger, W. Garrett, J. Geophys. Res. 75, 4561 (1970)

    Article  ADS  Google Scholar 

  20. D.C. Blanchard, Tellus B, 42, 200 (1990)

    Article  ADS  Google Scholar 

  21. R.S. Tseng, J.T. Viechnicki, R.A. Skop, J.W. Brown, J. Geophys. Res. 97, 520l (1992)

    Article  Google Scholar 

  22. G. Liger-Belair, Annales Phys. 31, 1 (EDP Sciences, 2006)

    Article  Google Scholar 

  23. N. Péron, A. Cagna, M. Valade, C. Bliard, V. Aguié-Béghin, R. Douillard, Langmuir, 17, 791 (2001)

    Article  Google Scholar 

  24. N. Péron, J. Meunier, A. Cagna, M. Valade, R. Douillard, J. Micro. 214, 89 (2004)

    Article  Google Scholar 

  25. G. Liger-Belair, C. Cilindre, R.D. Gougeon, M. Lucio, I. Gebefügi, P. Jeandet, P. Schmitt-Kopplin, Proc. Natl Acad. Sci. USA (2009)

  26. G. Liger-Belair, H. Lemaresquier, B. Robillard, B. Duteurtre, P. Jeandet, Am. J. Enol. Viticulture 52, 88 (2001a)

    Google Scholar 

  27. J.C. Bird, R. de Ruiter, L. Courbin, H.A. Stone, Nature 465, 759 (2010)

    Article  ADS  Google Scholar 

  28. J. Thomson, The London, Edinburgh, and Dublin Philosophical Magazine and J. Science 10, 330 (1855)

    Google Scholar 

  29. G. Liger-Belair, P. Jeandet Langmuir 19, 801 (2003a)

    Article  Google Scholar 

  30. E. Ghabache, Surface Libre Hors équilibre : de L’effondrement de Cavité Aux Jets étirés, Ph.D. thesis, UPMC, 2015

  31. L. Duchemin, Quelques Problèmes Fortement Non-linéaires de Surface Libre et Leur Résolution Numérique, Ph.D. thesis, Université Aix-Marseille II, 2001

  32. Y. Toba, J. Oceanographical Soc. Japan 15, 121 (1959)

    Google Scholar 

  33. F. Culick, J. Appl. Phys. 31, 1128 (1960)

    Article  ADS  Google Scholar 

  34. W.R. McEntee, K.J. Mysels, J. Phys. Chem. 73, 3018 (1969)

    Article  Google Scholar 

  35. A. Pandit, J. Davidson J. Fluid Mech. 212, 11 (1990)

    Article  ADS  Google Scholar 

  36. J. Senée, B. Robillard, M. Vignes-Adler, Food hydrocolloids 13, 15 (1999)

    Article  Google Scholar 

  37. S. Hayami, Y. Toba, J. Oceanographical Soc. Japan 14, 145 (1958)

    Google Scholar 

  38. J. Wu, J. Geophys. Res. 78, 511 (1973)

    Article  ADS  Google Scholar 

  39. J.M. Boulton-Stone, J.R. Blake, J. Fluid Mech. 254, 437 (1993)

    Article  ADS  Google Scholar 

  40. D.E. Spiel, J. Geophys. Res. 100, 4995 (1995)

    Article  ADS  Google Scholar 

  41. T. Séon, A. Antkowiak, Phys. Rev. Lett. 109 (2012)

  42. B.W. Zeff, B. Kleber, J. Fineberg, D.P. Lathrop, Nature 403, 401 (2000)

    Article  ADS  Google Scholar 

  43. D. Bartolo, C. Josserand, D. Bonn, Phys. Rev. Lett. 96, 124501 (2006)

    Article  ADS  Google Scholar 

  44. J.B. Keller, M.J. Miksis, SIAM J. Appl. Math. 43, 268 (1983)

    Article  Google Scholar 

  45. F.H. Zhang, S.T. Thoroddsen, Phys. Fluids 20, 022104 (2008)

    Article  ADS  Google Scholar 

  46. J.B. Keller, A. King, L. Ting, Phys. Fluids (1994-present) 7, 226 (1995)

    Article  ADS  Google Scholar 

  47. H.A. Stone, L. Leal, J. Fluid Mech. 198, 399 (1989)

    Article  ADS  Google Scholar 

  48. A.A. Castrejón-Pita, J. Castrejon-Pita, I. Hutchings, Phys. Rev. Lett. 108, 074506 (2012)

    Article  ADS  Google Scholar 

  49. M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Adv. Mater. 22, 673 (2010)

    Article  Google Scholar 

  50. J.M. Gordillo, S. Gekle, J. Fluid Mech. 663, 331 (2010)

    Article  ADS  Google Scholar 

  51. E. Ghabache, T. Séon, A. Antkowiak, J. Fluid Mech. 761, 206 (2014)

    Article  ADS  Google Scholar 

  52. P.L.L. Walls, L. Henaux, J.C. Bird, Phys. Rev. E 92, 021002 (2015)

    Article  ADS  Google Scholar 

  53. C.F. Kientzler, A.B. Arons, D.C. Blanchard, A.H. Woodcock, Tellus 6, 1 (1954)

    Article  ADS  Google Scholar 

  54. S.R. Massel, Ocean Waves Breaking and Marine Aerosol Fluxes (Springer, 2007)

  55. G.B. Deane, M.D. Stokes, Nature 418, 839 (2002)

    Article  ADS  Google Scholar 

  56. L. Deike, W.K. Melville, S. Popinet, J. Fluid Mech. 801, 91 (2016)

    Article  ADS  Google Scholar 

  57. G. Liger-Belair, A. Conreux, S. Villaume, C. Cilindre, Food Res. Int. 54, 516 (2013)

    Article  Google Scholar 

  58. E. Ghabache, G. Liger-Belair, A. Antkowiak, T. Séon, Sci. Rep. 6, 25148 (2016)

    Article  ADS  Google Scholar 

  59. D. Blanchard, A. Woodcock, Tellus 9, 145 (1957)

    Article  ADS  Google Scholar 

  60. R. Clift, J.R. Grace, M.E. Weber, Bubbles, drops, and particles, edited by D. Publications (Dover books on engineering, 2005)

  61. L. Schiller, A. Naumann, Vdi Zeitung 77, 51 (1935)

    Google Scholar 

  62. A. Frohn, N. Roth, Dynamics of Droplets (Springer Science & Business Media, 2000)

  63. W.A. Sirignano, Fluid Dynamics and Transport of Droplets and Sprays (Cambridge University Press, 1999)

  64. A.-M. Cazabat, G. Guéna, Soft Matter 6, 2591 (2010)

    Article  ADS  Google Scholar 

  65. I. Langmuir, Phys. Rev. 12, 368 (1918)

    Article  ADS  Google Scholar 

  66. N.A. Fuchs, Evaporation and Droplet Growth in Gaseous Media, edited by P. Press (Elsevier, 1959)

  67. W. Ranz, W. Marshall, Chem. Eng. Prog 48, 141 (1952)

    Google Scholar 

  68. E. Pohlhausen, ZAMM-J. Appl. Math. Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 1, 115 (1921)

    Article  ADS  Google Scholar 

  69. F. Boulogne, A. Sauret, B. Soh, E. Dressaire, H.A. Stone, Langmuir 31, 3094 (2015)

    Article  Google Scholar 

  70. G. Liger-Belair, J. Phys. Chem. B 118, 3156 (2014)

    Article  Google Scholar 

  71. G. Liger-Belair, B. Robillard, M. Vignes-Adler, P. Jeandet, Comptes Rendus de l’Académie des Sciences-Series IV-Physics 2, 775 (2001)

    ADS  Google Scholar 

  72. G. Liger-Belair, P. Jeandet, Langmuir 19, 5771 (2003b)

    Article  Google Scholar 

  73. H. Ritacco, F. Kiefer, D. Langevin, Phys. Rev. Lett. 98, 244501 (2007)

    Article  ADS  Google Scholar 

  74. A. Handa, A. Emery, R. Spier, Developments in biological standardization 66, 241 (1986)

    Google Scholar 

  75. K.T. Kunas, E.T. Papoutsakis, Biotechnol. Bioeng. 36, 476 (1990)

    Article  Google Scholar 

  76. T. Van Leeuwen, J. Meertens, E. Velema, M. Post, C. Borst, Circulation 87, 1258 (1993)

    Article  Google Scholar 

  77. E.-A. Brujan, EPL (Europhysics Letters) 50, 175 (2000)

    Article  ADS  Google Scholar 

  78. N. Vandewalle, J. Lentz, S. Dorbolo, F. Brisbois, Phys. Rev. Lett. 86, 179 (2001)

    Article  ADS  Google Scholar 

  79. J. Herman, R. Mesler, J. Colloid and Interface Science 117, 565 (1987)

    Article  Google Scholar 

  80. H.N. Oguz, A. Prosperetti, J. Fluid Mech. 219, 143 (1990)

    Article  ADS  Google Scholar 

  81. M.S. Longuet-Higgins, J. Fluid Mech. 214, 395 (1990)

    Article  ADS  Google Scholar 

  82. A. Prosperetti, H.N. Oguz, Ann. Rev. Fluid Mech. 25, 577 (1993)

    Article  ADS  Google Scholar 

  83. M. Rein, J. Fluid Mech. 306, 145 (1996)

    Article  ADS  Google Scholar 

  84. D. Morton, M. Rudman, L. Jong-Leng, Phys. Fluids (1994-present) 12, 747 (2000)

    Article  ADS  Google Scholar 

  85. G. Liger-Belair, G. Polidori, Voyage au coeur d’une bulle de champagne (Odile Jacob, 2011)

  86. Y. Couder, S. Protière, E. Fort, A. Boudaoud, Nature 437 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Séon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Séon, T., Liger-Belair, G. Effervescence in champagne and sparkling wines: From bubble bursting to droplet evaporation. Eur. Phys. J. Spec. Top. 226, 117–156 (2017). https://doi.org/10.1140/epjst/e2017-02679-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2017-02679-6

Navigation