The European Physical Journal Special Topics

, Volume 226, Issue 1, pp 117–156 | Cite as

Effervescence in champagne and sparkling wines: From bubble bursting to droplet evaporation

Review
  • 178 Downloads
Part of the following topical collections:
  1. Bubble Dynamics in Champagne and Sparkling Wines: Recent Advances and Future Prospects

Abstract

When a bubble reaches an air-liquid interface, it ruptures, projecting a multitude of tiny droplets in the air. Across the oceans, an estimated 1018 to 1020 bubbles burst every second, and form the so called sea spray, a major player in earth’s climate system. At a smaller scale, in a glass of champagne about a million bubbles nucleate on the wall, rise towards the surface and burst, giving birth to a particular aerosol that holds a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in simple liquids, we depict each step of this effervescence, from bubble bursting to drop evaporation. In particular, we propose simple scaling laws for the jet velocity and the top drop size. We unravel experimentally the intricate roles of bubble shape, capillary waves, gravity, and liquid properties in the jet dynamics and the drop detachment. We demonstrate how damping action of viscosity produces faster and smaller droplets and more generally how liquid properties enable to control the bubble bursting aerosol characteristics. In this context, the particular case of Champagne wine aerosol is studied in details and the key features of this aerosol are identified. We demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. Conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of aerosol characteristics and flavor release during sparkling wine tasting, a major issue of the sparkling wine industry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Liger-Belair, G. Polidori, P. Jeandet, Chem. Soc. Rev. 37, 2490 (2008)CrossRefGoogle Scholar
  2. 2.
    D.C. Blanchard, L.D. Syzdek, J. Geophys. Res. 93, 3649 (1988)ADSCrossRefGoogle Scholar
  3. 3.
    J. Wu, J. Phys. Oceanogr. 31, 3249 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    H. Lhuissier, E. Villermaux, J. Fluid Mech. 696, 5 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    L. Duchemin, S. Popinet, C. Josserand, S. Zaleski, Phys. Fluids 14, 3000 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    J.S. Lee, B.M. Weon, S.J. Park, J.H. Je, K. Fezzaa, W.-K. Lee, Nat Commun, 2 (2011)Google Scholar
  7. 7.
    E. Ghabache, A. Antkowiak, C. Josserand, T. Séon, Phys. Fluids (1994-present) 26, (2014a)Google Scholar
  8. 8.
    D.C. Blanchard, Progress In Oceanography 1, 73 (1963)ADSCrossRefGoogle Scholar
  9. 9.
    D.E. Spiel, J. Geophys. Res. 99, 10289 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    E. Ghabache, T. Séon, Phys. Rev. Fluids 1 (2016)Google Scholar
  11. 11.
    F.J. Resch, J.S. Darrozes, G.M. Afeti, J. Geophys. Res. 91(C1), 1019 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    A.H. Woodcock, C.F. Kientzler, A.B. Arons, D.C. Blanchard, Nature 172, 1144 (1953)ADSCrossRefGoogle Scholar
  13. 13.
    F. MacIntyre, J. Geophys. Res. 77, 5211 (1972)ADSCrossRefGoogle Scholar
  14. 14.
    J. Wu, Science 212, 324 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    D.E. Spiel, J. Geophys. Res. 102, 5815 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    E.R. Lewis, S.E. Schwartz, Sea Salt Aerosol Production. Mechanisms, Methods, Measurements, and Models, geophysical monograph 152 ed. (American Geophysical Union, Washington, DC, 2004)Google Scholar
  17. 17.
    C.D. O’Dowd, G. de Leeuw, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 365, 1753 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    C.D. O’Dowd, M.C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y.J. Yoon, J.-P. Putaud, Nature 431, 676 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    W. Barger, W. Garrett, J. Geophys. Res. 75, 4561 (1970)ADSCrossRefGoogle Scholar
  20. 20.
    D.C. Blanchard, Tellus B, 42, 200 (1990)ADSCrossRefGoogle Scholar
  21. 21.
    R.S. Tseng, J.T. Viechnicki, R.A. Skop, J.W. Brown, J. Geophys. Res. 97, 520l (1992)CrossRefGoogle Scholar
  22. 22.
    G. Liger-Belair, Annales Phys. 31, 1 (EDP Sciences, 2006)CrossRefGoogle Scholar
  23. 23.
    N. Péron, A. Cagna, M. Valade, C. Bliard, V. Aguié-Béghin, R. Douillard, Langmuir, 17, 791 (2001)CrossRefGoogle Scholar
  24. 24.
    N. Péron, J. Meunier, A. Cagna, M. Valade, R. Douillard, J. Micro. 214, 89 (2004)CrossRefGoogle Scholar
  25. 25.
    G. Liger-Belair, C. Cilindre, R.D. Gougeon, M. Lucio, I. Gebefügi, P. Jeandet, P. Schmitt-Kopplin, Proc. Natl Acad. Sci. USA (2009)Google Scholar
  26. 26.
    G. Liger-Belair, H. Lemaresquier, B. Robillard, B. Duteurtre, P. Jeandet, Am. J. Enol. Viticulture 52, 88 (2001a)Google Scholar
  27. 27.
    J.C. Bird, R. de Ruiter, L. Courbin, H.A. Stone, Nature 465, 759 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    J. Thomson, The London, Edinburgh, and Dublin Philosophical Magazine and J. Science 10, 330 (1855)Google Scholar
  29. 29.
    G. Liger-Belair, P. Jeandet Langmuir 19, 801 (2003a)CrossRefGoogle Scholar
  30. 30.
    E. Ghabache, Surface Libre Hors équilibre : de L’effondrement de Cavité Aux Jets étirés, Ph.D. thesis, UPMC, 2015Google Scholar
  31. 31.
    L. Duchemin, Quelques Problèmes Fortement Non-linéaires de Surface Libre et Leur Résolution Numérique, Ph.D. thesis, Université Aix-Marseille II, 2001Google Scholar
  32. 32.
    Y. Toba, J. Oceanographical Soc. Japan 15, 121 (1959)Google Scholar
  33. 33.
    F. Culick, J. Appl. Phys. 31, 1128 (1960)ADSCrossRefGoogle Scholar
  34. 34.
    W.R. McEntee, K.J. Mysels, J. Phys. Chem. 73, 3018 (1969)CrossRefGoogle Scholar
  35. 35.
    A. Pandit, J. Davidson J. Fluid Mech. 212, 11 (1990)ADSCrossRefGoogle Scholar
  36. 36.
    J. Senée, B. Robillard, M. Vignes-Adler, Food hydrocolloids 13, 15 (1999)CrossRefGoogle Scholar
  37. 37.
    S. Hayami, Y. Toba, J. Oceanographical Soc. Japan 14, 145 (1958)Google Scholar
  38. 38.
    J. Wu, J. Geophys. Res. 78, 511 (1973)ADSCrossRefGoogle Scholar
  39. 39.
    J.M. Boulton-Stone, J.R. Blake, J. Fluid Mech. 254, 437 (1993)ADSCrossRefGoogle Scholar
  40. 40.
    D.E. Spiel, J. Geophys. Res. 100, 4995 (1995)ADSCrossRefGoogle Scholar
  41. 41.
    T. Séon, A. Antkowiak, Phys. Rev. Lett. 109 (2012)Google Scholar
  42. 42.
    B.W. Zeff, B. Kleber, J. Fineberg, D.P. Lathrop, Nature 403, 401 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    D. Bartolo, C. Josserand, D. Bonn, Phys. Rev. Lett. 96, 124501 (2006)ADSCrossRefGoogle Scholar
  44. 44.
    J.B. Keller, M.J. Miksis, SIAM J. Appl. Math. 43, 268 (1983)CrossRefGoogle Scholar
  45. 45.
    F.H. Zhang, S.T. Thoroddsen, Phys. Fluids 20, 022104 (2008)ADSCrossRefGoogle Scholar
  46. 46.
    J.B. Keller, A. King, L. Ting, Phys. Fluids (1994-present) 7, 226 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    H.A. Stone, L. Leal, J. Fluid Mech. 198, 399 (1989)ADSCrossRefGoogle Scholar
  48. 48.
    A.A. Castrejón-Pita, J. Castrejon-Pita, I. Hutchings, Phys. Rev. Lett. 108, 074506 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    M. Singh, H.M. Haverinen, P. Dhagat, G.E. Jabbour, Adv. Mater. 22, 673 (2010)CrossRefGoogle Scholar
  50. 50.
    J.M. Gordillo, S. Gekle, J. Fluid Mech. 663, 331 (2010)ADSCrossRefGoogle Scholar
  51. 51.
    E. Ghabache, T. Séon, A. Antkowiak, J. Fluid Mech. 761, 206 (2014)ADSCrossRefGoogle Scholar
  52. 52.
    P.L.L. Walls, L. Henaux, J.C. Bird, Phys. Rev. E 92, 021002 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    C.F. Kientzler, A.B. Arons, D.C. Blanchard, A.H. Woodcock, Tellus 6, 1 (1954)ADSCrossRefGoogle Scholar
  54. 54.
    S.R. Massel, Ocean Waves Breaking and Marine Aerosol Fluxes (Springer, 2007)Google Scholar
  55. 55.
    G.B. Deane, M.D. Stokes, Nature 418, 839 (2002)ADSCrossRefGoogle Scholar
  56. 56.
    L. Deike, W.K. Melville, S. Popinet, J. Fluid Mech. 801, 91 (2016)ADSCrossRefGoogle Scholar
  57. 57.
    G. Liger-Belair, A. Conreux, S. Villaume, C. Cilindre, Food Res. Int. 54, 516 (2013)CrossRefGoogle Scholar
  58. 58.
    E. Ghabache, G. Liger-Belair, A. Antkowiak, T. Séon, Sci. Rep. 6, 25148 (2016)ADSCrossRefGoogle Scholar
  59. 59.
    D. Blanchard, A. Woodcock, Tellus 9, 145 (1957)ADSCrossRefGoogle Scholar
  60. 60.
    R. Clift, J.R. Grace, M.E. Weber, Bubbles, drops, and particles, edited by D. Publications (Dover books on engineering, 2005)Google Scholar
  61. 61.
    L. Schiller, A. Naumann, Vdi Zeitung 77, 51 (1935)Google Scholar
  62. 62.
    A. Frohn, N. Roth, Dynamics of Droplets (Springer Science & Business Media, 2000)Google Scholar
  63. 63.
    W.A. Sirignano, Fluid Dynamics and Transport of Droplets and Sprays (Cambridge University Press, 1999)Google Scholar
  64. 64.
    A.-M. Cazabat, G. Guéna, Soft Matter 6, 2591 (2010)ADSCrossRefGoogle Scholar
  65. 65.
    I. Langmuir, Phys. Rev. 12, 368 (1918)ADSCrossRefGoogle Scholar
  66. 66.
    N.A. Fuchs, Evaporation and Droplet Growth in Gaseous Media, edited by P. Press (Elsevier, 1959)Google Scholar
  67. 67.
    W. Ranz, W. Marshall, Chem. Eng. Prog 48, 141 (1952)Google Scholar
  68. 68.
    E. Pohlhausen, ZAMM-J. Appl. Math. Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik 1, 115 (1921)ADSCrossRefGoogle Scholar
  69. 69.
    F. Boulogne, A. Sauret, B. Soh, E. Dressaire, H.A. Stone, Langmuir 31, 3094 (2015)CrossRefGoogle Scholar
  70. 70.
    G. Liger-Belair, J. Phys. Chem. B 118, 3156 (2014)CrossRefGoogle Scholar
  71. 71.
    G. Liger-Belair, B. Robillard, M. Vignes-Adler, P. Jeandet, Comptes Rendus de l’Académie des Sciences-Series IV-Physics 2, 775 (2001)ADSGoogle Scholar
  72. 72.
    G. Liger-Belair, P. Jeandet, Langmuir 19, 5771 (2003b)CrossRefGoogle Scholar
  73. 73.
    H. Ritacco, F. Kiefer, D. Langevin, Phys. Rev. Lett. 98, 244501 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    A. Handa, A. Emery, R. Spier, Developments in biological standardization 66, 241 (1986)Google Scholar
  75. 75.
    K.T. Kunas, E.T. Papoutsakis, Biotechnol. Bioeng. 36, 476 (1990)CrossRefGoogle Scholar
  76. 76.
    T. Van Leeuwen, J. Meertens, E. Velema, M. Post, C. Borst, Circulation 87, 1258 (1993)CrossRefGoogle Scholar
  77. 77.
    E.-A. Brujan, EPL (Europhysics Letters) 50, 175 (2000)ADSCrossRefGoogle Scholar
  78. 78.
    N. Vandewalle, J. Lentz, S. Dorbolo, F. Brisbois, Phys. Rev. Lett. 86, 179 (2001)ADSCrossRefGoogle Scholar
  79. 79.
    J. Herman, R. Mesler, J. Colloid and Interface Science 117, 565 (1987)CrossRefGoogle Scholar
  80. 80.
    H.N. Oguz, A. Prosperetti, J. Fluid Mech. 219, 143 (1990)ADSCrossRefGoogle Scholar
  81. 81.
    M.S. Longuet-Higgins, J. Fluid Mech. 214, 395 (1990)ADSCrossRefGoogle Scholar
  82. 82.
    A. Prosperetti, H.N. Oguz, Ann. Rev. Fluid Mech. 25, 577 (1993)ADSCrossRefGoogle Scholar
  83. 83.
    M. Rein, J. Fluid Mech. 306, 145 (1996)ADSCrossRefGoogle Scholar
  84. 84.
    D. Morton, M. Rudman, L. Jong-Leng, Phys. Fluids (1994-present) 12, 747 (2000)ADSCrossRefGoogle Scholar
  85. 85.
    G. Liger-Belair, G. Polidori, Voyage au coeur d’une bulle de champagne (Odile Jacob, 2011)Google Scholar
  86. 86.
    Y. Couder, S. Protière, E. Fort, A. Boudaoud, Nature 437 (2005)Google Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Sorbonne Universités, Université Pierre et Marie Curie, and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7190, Institut Jean Le Rond d’AlembertParisFrance
  2. 2.Équipe Effervescence (GSMA), UMR CNRS 7331, Université de Reims Champagne-ArdenneReimsFrance

Personalised recommendations