The European Physical Journal Special Topics

, Volume 226, Issue 6, pp 1307–1324 | Cite as

Controlling Marangoni flow directionality: patterning nano-materials using sessile and sliding volatile droplets

  • M. Abo Jabal
  • E. Homede
  • L. M. Pismen
  • H. Haick
  • A. M. Leshansky
Regular Article
Part of the following topical collections:
  1. IMA8 - Interfacial Fluid Dynamics and Processes

Abstract

Controlling the droplet shape and the corresponding deposition patterns is pivotal in a wide range of processes and applications based on surface phenomena, such as self-assembly of different types of nanomaterials and fabrication of functional electronic devices. In this paper we study different flow regimes and deposition patterns from volatile sessile droplets and droplets sliding over inclined solid substrates. The directionality and intensity of the Marangoni flow was controlled by vapor composition in a sealed chamber enclosing the evaporating droplets. Two types of volatile droplets are investigated: single component droplets and binary solution droplets. Binary solution droplets can exhibit either inward or outward Marangoni soluto-capillary flow, depending on a surface tension dependence on the concentration of the fast evaporating component. We carried out a detailed experimental study of the micro-rivulet (μ-R) regime in different binary solutions. The μ-R formation in a certain range of Ca proved to be a universal phenomenon subject to the occurrence of inward Marangoni flow. We propose a simplified mathematical model for the shape of μ-R based on the lubrication approximation. The resulting μ-R profile shows a good agreement with the experimental results.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

References

  1. 1.
    H. Liu, W. Xu, W. Tan, X. Zhu, J. Wang, J. Peng, Y. Cao, J. Colloid Interface Sci. 465, 106 (2016)CrossRefGoogle Scholar
  2. 2.
    Y. Aleeva, B. Pignataro, J. Mater. Chem. C 2, 6436 (2014)CrossRefGoogle Scholar
  3. 3.
    E. Menard, M.A. Meitl, Y. Sun, J.U. Park, D.J.L. Shir, , Y.S. Nam, S. Jeon, J.A. Rogers, Chem. Rev. 107, 1117 (2007)CrossRefGoogle Scholar
  4. 4.
    S.S. Kim, S.I. Na, J. Jo, G. Tae, D.Y. Kim, Adv. Mater. 19, 4410 (2007)CrossRefGoogle Scholar
  5. 5.
    F.C. Krebs, Sol. Energy Mater. Sol. Cells 93, 465 (2009)CrossRefGoogle Scholar
  6. 6.
    K.D. Bardin, U.S. Patent 4, 311 (1977)Google Scholar
  7. 7.
    J. Park, J. Moon, Langmuir 22, 3506 (2006)CrossRefGoogle Scholar
  8. 8.
    R. Parashkov, E. Becker, T. Riedl, H.H. Johannes, W. Kowalsky, Proc. IEEE 93, 1321 (2005)CrossRefGoogle Scholar
  9. 9.
    B.Y. Ahn, E.B. Duoss, M.J. Motala, X. Guo, S.I. Park, Y. Xiong, J. Yoon, R.G. Nuzzo, J.A. Rogers, J.A. Lewis, Science 323, 1590 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    R. Bhardwaj, X. Fang, D. Attinger, New J. Phys. 11, 075020 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    R.D. Deegan, O. Bakajin, T.F. Dupont, G. Huber, S.R. Nagel, T.A. Witten, Nature 389, 827 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    R.G. Picknett, R. Bexon, J. Colloid Interface Sci. 61, 336 (1977)CrossRefGoogle Scholar
  13. 13.
    K. Sefiane, J. Bionic Eng. 7, S82 (2010)CrossRefGoogle Scholar
  14. 14.
    A. Askounis, K. Sefiane, V. Koutsos, M.E. Shanahan, Colloids Surf. A 441, 855 (2014)CrossRefGoogle Scholar
  15. 15.
    L.E. Scriven, C.V. Sternling, Nature 187, 186 (1960)ADSCrossRefGoogle Scholar
  16. 16.
    R. Vuilleumier, V. Ego, L. Neltner, A.M. Cazabat, Langmuir 11, 4117 (1995)CrossRefGoogle Scholar
  17. 17.
    X. Fanton, A.M. Cazabat, Langmuir 14, 2554 (1998)CrossRefGoogle Scholar
  18. 18.
    H. Hu, R.G. Larson, J. Phys. Chem. B 110, 7090 (2006)CrossRefGoogle Scholar
  19. 19.
    D. Pesach, A. Marmur, Langmuir 3, 519 (1987)CrossRefGoogle Scholar
  20. 20.
    G. Konvalina, A. Leshansky, H. Haick, Adv. Funct. Mater. 25, 2411 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Segev Bar, G. Konvalina, H. Haick, Adv. Mater. 27, 1779 (2015)CrossRefGoogle Scholar
  22. 22.
    L.M. Hocking, J. Fluid Mech. 211, 373 (1990)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    J.H. Snoeijer, N.L. Grand-Piteira, L. Limat, H.A. Stone, J. Eggers, Phys. Fluids. 19, 042104 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    C. Paterson, S.K. Wilson, B.R. Duffy, Eur. J. Mech. B 41, 94 (2013)CrossRefGoogle Scholar
  25. 25.
    F.D. Dos Santos, T. Ondarcuhu, Phys. Rev. Lett. 75, 2972 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    T. Podgorski, J.M. Flesselles, L. Limat, Phys. Rev. Lett. 87, 036102 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    S. Engelnkemper, M. Wilczek, S.V. Gurevich, U. Thiele, Phys. Rev. Fluids 1, 073901 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    A. Oron, S.H. Davis, S.G. Bankoff, Rev. Mod. Phys. 69, 931 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    M. Brust, M. Walker, D. Bethell, D.J Schiffrin, R. Whyman, J. Chem. Soc. Chem. Commun. 7, 801 (1994)CrossRefGoogle Scholar
  30. 30.
    O. Assad, A.M. Leshansky, B.Wang, T. Stelzner, S. Christiansen, H. Haick, ACS Nano 6, 7402 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  • M. Abo Jabal
    • 1
  • E. Homede
    • 1
  • L. M. Pismen
    • 1
  • H. Haick
    • 1
  • A. M. Leshansky
    • 1
  1. 1.Department of Chemical EngineeringTechnion – Israel Institute of TechnologyHaifa 3200003Israel

Personalised recommendations