The European Physical Journal Special Topics

, Volume 226, Issue 10, pp 2205–2218

Complexity and dynamics of topological and community structure in complex networks

Regular Article
Part of the following topical collections:
  1. Aspects of Statistical Mechanics and Dynamical Complexity

Abstract

Complexity is highly susceptible to variations in the network dynamics, reflected on its underlying architecture where topological organization of cohesive subsets into clusters, system’s modular structure and resulting hierarchical patterns, are cross-linked with functional dynamics of the system. Here we study connection between hierarchical topological scales of the simplicial complexes and the organization of functional clusters – communities in complex networks. The analysis reveals the full dynamics of different combinatorial structures of q-th-dimensional simplicial complexes and their Laplacian spectra, presenting spectral properties of resulting symmetric and positive semidefinite matrices. The emergence of system’s collective behavior from inhomogeneous statistical distribution is induced by hierarchically ordered topological structure, which is mapped to simplicial complex where local interactions between the nodes clustered into subcomplexes generate flow of information that characterizes complexity and dynamics of the full system.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.E.J. Newman, Networks: An Introduction (Oxford University Press, 2010)Google Scholar
  2. 2.
    R. Albert, H. Jeong, A.-L. Barabási, Nature 406, 378 (2000)CrossRefADSGoogle Scholar
  3. 3.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)MathSciNetCrossRefADSGoogle Scholar
  4. 4.
    M. Buchanan, Nexus (Norton, NewYork, 2002)Google Scholar
  5. 5.
    R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130 (1999)CrossRefADSGoogle Scholar
  6. 6.
    R. Milo et al., Science 298, 824 (2002)CrossRefADSGoogle Scholar
  7. 7.
    A. Graves et al., Nature 538, 471 (2016)CrossRefADSGoogle Scholar
  8. 8.
    K. Balazs, A. Barrat, Phys. Rev. E 77, 016102 (2008)CrossRefADSGoogle Scholar
  9. 9.
    M. Girvan, M.E. Newman, PNAS 99, 7821 (2002)CrossRefADSGoogle Scholar
  10. 10.
    A.E. Motter, C. Zhou, J. Kurths, Phys. Rev. E 71, 016116 (2005)CrossRefADSGoogle Scholar
  11. 11.
    M. Sales-Pardo, R. Guimera, A.A. Moreira, L.A.N. Amaral, PNAS 104, 7327 (2007)CrossRefGoogle Scholar
  12. 12.
    M.E. Newman, Nature Physics 8, 25 (2012)CrossRefADSGoogle Scholar
  13. 13.
    E. Sánchez-Burillo et al., Scientific Reports 2, 605 (2012)CrossRefGoogle Scholar
  14. 14.
    M. Freedman, A. Kitaev, M. Larsen, Z. Wang, Bulletin of the American Mathematical Society 40, 31 (2003)CrossRefGoogle Scholar
  15. 15.
    S.L. Braunstein, S. Ghosh, S. Severini, Annals of Combinatorics 10, 291 (2006)MathSciNetCrossRefGoogle Scholar
  16. 16.
    R.H. Atkin, International journal of man-machine studies 4, 139 (1972)CrossRefGoogle Scholar
  17. 17.
    J.R. Munkres, Simplices, in Elements of Algebraic Topology (Perseus Books Pub., New York, 1993)Google Scholar
  18. 18.
    B. Eckmann, Commentarii Math. Helvetici 7, 240 (1954)Google Scholar
  19. 19.
    T.J. Moore, R.J. Drost, P. Basu, R. Ramanathan, A. Swami, in Computer Communications Workshops (INFOCOM WKSHPS) (IEEE, 2012), p. 238Google Scholar
  20. 20.
    F. Buekenhout, M. Parker, Disc. Math. 186, 69 (1998)CrossRefGoogle Scholar
  21. 21.
    S.C. Choe, N.F. Johnson, P.M. Hui, Phys. Rev. E 70, 055101 R (2004)CrossRefADSGoogle Scholar
  22. 22.
    T.S. Lo, K.P. Chan, P.M. Hui, N.F. Johnson, Phys. Rev. E 71, 050101R (2005)CrossRefADSGoogle Scholar
  23. 23.
    P. Holme, M.E.J. Newman, Phys. Rev. E 74, 056108 (2006)CrossRefADSGoogle Scholar
  24. 24.
    M.G. Zimmermann, V.M. Eguluz, M. San Miguel, Phys. Rev. E 69, 065102R (2004)CrossRefADSGoogle Scholar
  25. 25.
    G. Deffuant, D. Neau, F. Amblard, G. Weisbush, Adv. Complex Syst. 3, 87 (2000)CrossRefGoogle Scholar
  26. 26.
    M. Cao, C.W. Wu, in IEEE International Symposium on Circuits and System, ISCAS 2007 (IEEE, 2007), p. 1029Google Scholar
  27. 27.
    C. Castellano, S. Fortunato, V. Loreto, Rev. Mod. Phys. 81, 591 (2009)CrossRefADSGoogle Scholar
  28. 28.
    V. Berec, Chaos, Solitons & Fractals 86, 75 (2016)MathSciNetCrossRefADSGoogle Scholar
  29. 29.
    G. Kossinets, D.J. Watts, Science 311, 88 (2006)MathSciNetCrossRefADSGoogle Scholar
  30. 30.
    P.L. Krapivsky, S. Redner, Phys. Rev. Lett. 90, 238701 (2003)CrossRefADSGoogle Scholar
  31. 31.
    E. Ben-Naim, P.L. Krapivsky, S. Redner, Physica D 183, 190 (2003)MathSciNetCrossRefADSGoogle Scholar
  32. 32.
    A. Hatcher, Agebraic Topology (Cambridge University Press, 2002)Google Scholar
  33. 33.
    A. Baryshnikova, M. Costanzo, C. L. Myers, B. Andrews, C. Boone, Annual review of genomics and human genetics 14, 111 (2013)Google Scholar
  34. 34.
  35. 35.
    Z.N. Oltvai, A.-L. Barabási, Science 298, 763 (2002)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Institute of Nuclear Sciences VincaBelgradeSerbia
  2. 2.University of BelgradeBelgradeSerbia

Personalised recommendations