Abstract
The Extended Fermi-Hubbard model is a rather studied Hamiltonian due to both its many applications and a rich phase diagram. Here we prove that all the phase transitions encoded in its one dimensional version are detectable via non-local operators related to charge and spin fluctuations. The main advantage in using them is that, in contrast to usual local operators, their asymptotic average value is finite only in the appropriate gapped phases. This makes them powerful and accurate probes to detect quantum phases. Our results indeed confirm that they are able to properly capture both the nature and the location of the transitions. Relevantly, this happens also for conducting phases with a spin gap, thus providing an order parameter for the identification of superconducting and paired superfluid phases.
Similar content being viewed by others
References
V.J. Emery, S.A. Kivelson, O. Zachar, Phys. Rev. B 56, 6120 (1997)
H.G. Keiss, Conjugated Conducting Polymers (Springer-Verlag, Berlin, 1992)
T. Ishiguro, K. Yamaji, Organic Superconductors (Springer-Verlag, Berlin, 1990)
J.E. Hirsch, Phys. Rev. Lett. 53, 2327 (1984)
H.Q. Lin, J.E. Hirsch, Phys. Rev. B 33, 8155 (1986)
J.W. Cannon, E. Fradkin, Phys. Rev. B 41, 9435 (1990)
K. Penc, F. Mila, Phys. Rev. B 49, 9670 (1994)
M. Nakamura, J. Phys. Soc. Jpn. 68, 3123 (1999)
M. Nakamura, Phys. Rev. B 61, 16377 (2000)
F. Iemini, T.O. Maciel, R.O. Vianna, Phys. Rev. B 92, 075423 (2015)
P. Sengupta, A.W. Sanders, D.C. Campbell, Phys. Rev. B 65, 155113 (2002)
M. Tsuchiizu, A. Furusaki, Phys. Rev. Lett. 88, 056402 (2002)
E. Jeckelmann, Phys. Rev. Lett. 89, 236401 (2002)
A.W. Sandvik, L. Balents, D.K. Campbell, Phys. Rev. Lett. 92, 236401 (2004)
M. Tsuchiizu, A. Furusaki, Phys. Rev. B 69, 035103 (2004)
S. Ejima, S. Nishimoto, Phys. Rev. Lett. 99, 216403 (2007)
M. Dalmonte, J. Carrasquilla, L. Taddia, E. Ercolessi, M. Rigol, Phys. Rev. B 91, 165136 (2015)
L. Barbiero, A. Montorsi, M. Roncaglia, Phys. Rev. B 88, 035109 (2013)
A. Dhar, J.J. Kinnunen, P. Törmä, Phys. Rev. B 94, 075116 (2016)
I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)
S. Baier, M.J. Mark, D. Petter, K. Aikawa, L. Chomaz, Zi Cai, M. Baranov, P. Zoller, F. Ferlaino, Science 352, 201 (2016)
M. Lu, N.Q. Burdick, S.H. Youn, B.L. Lev, Phys. Rev. Lett. 107, 190401 (2011)
K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, F. Ferlaino, Phys. Rev. Lett. 112, 010404 (2014)
J.W. Park, S.A. Will, M.W. Zwierlein, Phys. Rev. Lett. 114, 205302 (2015)
M. Di Dio, L. Barbiero, A. Recati, M. Dalmonte, Phys. Rev. A 90, 063608 (2014)
S. Fazzini, A. Montorsi, M. Roncaglia, L. Barbiero, arXiv:1607.05682
M. Endres et al., Science 334, 200 (2011)
M.F. Parsons, A. Mazurenko, C.S. Chiu, G. Ji, D. Greif, M. Greiner, arXiv:1605.02704
M. Boll, T.A. Hilker, G. Salomon, A. Omran, I. Bloch, C. Gross, arXiv:1605.05661
N. Mermin, H. Wagner, Phys Rev. Lett. 17, 1133 (1966)
A. Montorsi, F. Dolcini, R. Iotti, F. Rossi, arXiv:1610.0576v1
M. den Nijs, K. Rommelse, Phys. Rev. B 40, 4709 (1989)
S.R. White, Phys. Rev. Lett. 69, 2863 (1992)
F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)
T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2003)
F. Dolcini, A. Montorsi, Phys. Rev. B 88, 115115 (2013)
E. Berg, E.G. Dalla Torre, T. Giamarchi, E. Altman, Phys. Rev. B 77, 245119 (2008)
A. Montorsi, M. Roncaglia, Phys. Rev. Lett. 109, 236404 (2012)
X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen, Science 338, 1604 (2012)
X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen, Phys. Rev. B 87, 155114 (2013)
C. Degli Esposti Boschi, A. Montorsi, M. Roncaglia, Phys. Rev. B 94, 085119 (2016)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barbiero, L., Fazzini, S. & Montorsi, A. Non-local order parameters as a probe for phase transitions in the extended Fermi-Hubbard model. Eur. Phys. J. Spec. Top. 226, 2697–2704 (2017). https://doi.org/10.1140/epjst/e2016-60386-1
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjst/e2016-60386-1