Skip to main content
Log in

Non-local order parameters as a probe for phase transitions in the extended Fermi-Hubbard model

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The Extended Fermi-Hubbard model is a rather studied Hamiltonian due to both its many applications and a rich phase diagram. Here we prove that all the phase transitions encoded in its one dimensional version are detectable via non-local operators related to charge and spin fluctuations. The main advantage in using them is that, in contrast to usual local operators, their asymptotic average value is finite only in the appropriate gapped phases. This makes them powerful and accurate probes to detect quantum phases. Our results indeed confirm that they are able to properly capture both the nature and the location of the transitions. Relevantly, this happens also for conducting phases with a spin gap, thus providing an order parameter for the identification of superconducting and paired superfluid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.J. Emery, S.A. Kivelson, O. Zachar, Phys. Rev. B 56, 6120 (1997)

    Article  ADS  Google Scholar 

  2. H.G. Keiss, Conjugated Conducting Polymers (Springer-Verlag, Berlin, 1992)

  3. T. Ishiguro, K. Yamaji, Organic Superconductors (Springer-Verlag, Berlin, 1990)

  4. J.E. Hirsch, Phys. Rev. Lett. 53, 2327 (1984)

    Article  ADS  Google Scholar 

  5. H.Q. Lin, J.E. Hirsch, Phys. Rev. B 33, 8155 (1986)

    Article  ADS  Google Scholar 

  6. J.W. Cannon, E. Fradkin, Phys. Rev. B 41, 9435 (1990)

    Article  ADS  Google Scholar 

  7. K. Penc, F. Mila, Phys. Rev. B 49, 9670 (1994)

    Article  ADS  Google Scholar 

  8. M. Nakamura, J. Phys. Soc. Jpn. 68, 3123 (1999)

    Article  ADS  Google Scholar 

  9. M. Nakamura, Phys. Rev. B 61, 16377 (2000)

    Article  ADS  Google Scholar 

  10. F. Iemini, T.O. Maciel, R.O. Vianna, Phys. Rev. B 92, 075423 (2015)

    Article  ADS  Google Scholar 

  11. P. Sengupta, A.W. Sanders, D.C. Campbell, Phys. Rev. B 65, 155113 (2002)

    Article  ADS  Google Scholar 

  12. M. Tsuchiizu, A. Furusaki, Phys. Rev. Lett. 88, 056402 (2002)

    Article  ADS  Google Scholar 

  13. E. Jeckelmann, Phys. Rev. Lett. 89, 236401 (2002)

    Article  ADS  Google Scholar 

  14. A.W. Sandvik, L. Balents, D.K. Campbell, Phys. Rev. Lett. 92, 236401 (2004)

    Article  ADS  Google Scholar 

  15. M. Tsuchiizu, A. Furusaki, Phys. Rev. B 69, 035103 (2004)

    Article  ADS  Google Scholar 

  16. S. Ejima, S. Nishimoto, Phys. Rev. Lett. 99, 216403 (2007)

    Article  ADS  Google Scholar 

  17. M. Dalmonte, J. Carrasquilla, L. Taddia, E. Ercolessi, M. Rigol, Phys. Rev. B 91, 165136 (2015)

    Article  ADS  Google Scholar 

  18. L. Barbiero, A. Montorsi, M. Roncaglia, Phys. Rev. B 88, 035109 (2013)

    Article  ADS  Google Scholar 

  19. A. Dhar, J.J. Kinnunen, P. Törmä, Phys. Rev. B 94, 075116 (2016)

    Article  ADS  Google Scholar 

  20. I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)

    Article  ADS  Google Scholar 

  21. S. Baier, M.J. Mark, D. Petter, K. Aikawa, L. Chomaz, Zi Cai, M. Baranov, P. Zoller, F. Ferlaino, Science 352, 201 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Lu, N.Q. Burdick, S.H. Youn, B.L. Lev, Phys. Rev. Lett. 107, 190401 (2011)

    Article  ADS  Google Scholar 

  23. K. Aikawa, A. Frisch, M. Mark, S. Baier, R. Grimm, F. Ferlaino, Phys. Rev. Lett. 112, 010404 (2014)

    Article  ADS  Google Scholar 

  24. J.W. Park, S.A. Will, M.W. Zwierlein, Phys. Rev. Lett. 114, 205302 (2015)

    Article  ADS  Google Scholar 

  25. M. Di Dio, L. Barbiero, A. Recati, M. Dalmonte, Phys. Rev. A 90, 063608 (2014)

    Article  ADS  Google Scholar 

  26. S. Fazzini, A. Montorsi, M. Roncaglia, L. Barbiero, arXiv:1607.05682

  27. M. Endres et al., Science 334, 200 (2011)

    Article  ADS  Google Scholar 

  28. M.F. Parsons, A. Mazurenko, C.S. Chiu, G. Ji, D. Greif, M. Greiner, arXiv:1605.02704

  29. M. Boll, T.A. Hilker, G. Salomon, A. Omran, I. Bloch, C. Gross, arXiv:1605.05661

  30. N. Mermin, H. Wagner, Phys Rev. Lett. 17, 1133 (1966)

    Article  ADS  Google Scholar 

  31. A. Montorsi, F. Dolcini, R. Iotti, F. Rossi, arXiv:1610.0576v1

  32. M. den Nijs, K. Rommelse, Phys. Rev. B 40, 4709 (1989)

    Article  ADS  Google Scholar 

  33. S.R. White, Phys. Rev. Lett. 69, 2863 (1992)

    Article  ADS  Google Scholar 

  34. F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  35. T. Giamarchi, Quantum Physics in One Dimension (Oxford University Press, Oxford, 2003)

  36. F. Dolcini, A. Montorsi, Phys. Rev. B 88, 115115 (2013)

    Article  ADS  Google Scholar 

  37. E. Berg, E.G. Dalla Torre, T. Giamarchi, E. Altman, Phys. Rev. B 77, 245119 (2008)

    Article  ADS  Google Scholar 

  38. A. Montorsi, M. Roncaglia, Phys. Rev. Lett. 109, 236404 (2012)

    Article  ADS  Google Scholar 

  39. X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen, Science 338, 1604 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  40. X. Chen, Z.-C. Gu, Z.-X. Liu, X.-G. Wen, Phys. Rev. B 87, 155114 (2013)

    Article  ADS  Google Scholar 

  41. C. Degli Esposti Boschi, A. Montorsi, M. Roncaglia, Phys. Rev. B 94, 085119 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serena Fazzini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbiero, L., Fazzini, S. & Montorsi, A. Non-local order parameters as a probe for phase transitions in the extended Fermi-Hubbard model. Eur. Phys. J. Spec. Top. 226, 2697–2704 (2017). https://doi.org/10.1140/epjst/e2016-60386-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60386-1

Navigation