The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 567–579 | Cite as

Large-deviation properties of the largest 2-core component for random graphs

Regular Article
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena

Abstract

Distributions of the size of the largest component of the 2-core for Erdos-Rényi (ER) random graphs with finite connectivity c and a finite number N of nodes are studied. The distributions are obtained basically over the full range of the support, with probabilities down to values as small as 10−320. This is achieved by using an artificial finite-temperature (Boltzmann) ensemble. The distributions for the 2-core resemble roughly the results obtained previously for the largest components of the full ER random graphs, but they are shifted to much smaller probabilities (c ≤ 1) or to smaller sizes (c > 1). The numerical data is compatible with a convergence of the rate function to a limiting shape, i.e., the large-deviations principle apparently holds.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.K. Hartmann, Big Practical Guide to Computer Simulations (World Scientific, Singapore, 2015)Google Scholar
  2. 2.
    D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, GB, 2004)Google Scholar
  3. 3.
    J.N. Reddy, Introduction to the Finite Element Method (Mcgraw-Hill Education, Columbus, USA, 2005)Google Scholar
  4. 4.
    M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics (Clarendon Press, Oxford, 1999)Google Scholar
  5. 5.
    D.P. Landau, K. Binder, Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000)Google Scholar
  6. 6.
    F. den Hollander, Large Deviations (American Mathematical Society, Providence, 2000)Google Scholar
  7. 7.
    A. Dembo, O. Zeitouni, Large Deviations Techniques and Applications (Springer, Berlin, 2010)Google Scholar
  8. 8.
    A.K. Hartmann, Phys. Rev. E 65, 056102 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    S. Wolfsheimer, B. Burghardt, A.K. Hartmann, Algor. Mol. Biol. 2, 9 (2007)CrossRefGoogle Scholar
  10. 10.
    L. Newberg, J. Comp. Biol. 15, 1187 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Durbin, S.R. Eddy, A. Krogh, G. Mitchison, Biological Sequence Analysis (Cambridge University Press, Cambridge, 2006)Google Scholar
  12. 12.
    A. Engel, R. Monasson, A.K. Hartmann, J. Stat. Phys. 117, 387 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    A.K. Hartmann, Phys. Rev. Lett. 94, 050601 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    M. Körner, H.G. Katzgraber, A.K. Hartmann, JSTAT 2006, P04005 (2006)CrossRefGoogle Scholar
  15. 15.
    C. Monthus, T. Garel, Phys. Rev. E 74, 051109 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Matsuda, H. Nishimori, K. Hukushima, J. Phys. A: Math. Theor. 41, 324012 (2008)CrossRefGoogle Scholar
  17. 17.
    Y. Iba, K. Hukushima, J. Phys. Soc. Japan 77, 103801 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    S. Wolfsheimer, A.K. Hartmann, Phys. Rev. E 82, 021902 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    T.A. Driscoll, K.L. Maki, SIAM Review 49, 673 (2007)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    N. Saito, Y. Iba, K. Hukushima, Phys. Rev. E 82, 031142 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    A.K. Hartmann, S.N. Majumdar, A. Rosso, Phys. Rev. E 88, 022119 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    A.K. Hartmann, Phys. Rev. E 89, 052103 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    A.K. Hartmann, Eur. Phys. J. B 84, 627 (2011)ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    J. Chalupa, P.L. Leath, G.R. Reich, J. Phys. C 12, L31 (1979) http://stacks.iop.org/0022-3719/12/i=1/a=008 ADSCrossRefGoogle Scholar
  25. 25.
    S.B. Seidman, Social Netw. 5, 269 (1983)CrossRefGoogle Scholar
  26. 26.
    G.D. Bader, C.W. Hogue, BMC Bioinformatics 4, 2 (2003)CrossRefGoogle Scholar
  27. 27.
    P. Erdös, A. Rényi, Publ. Math. Inst. Hungar. Acad. Sci. 5, 17 (1960)Google Scholar
  28. 28.
    N. O'Connell, Probab. Theo. Relat. Fields 110, 277 (1998)CrossRefGoogle Scholar
  29. 29.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  30. 30.
    A.M. Ferrenberg, R.H. Swendsen, Phys. Rev. Lett. 63, 1195 (1989)ADSCrossRefGoogle Scholar
  31. 31.
    A.K. Hartmann, in New Optimization Algorithms in Physics, edited by A.K. Hartmann, H. Rieger (Wiley-VCH, Weinheim, 2004), p. 253Google Scholar
  32. 32.
    B.A. Berg, T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992)ADSCrossRefGoogle Scholar
  33. 33.
    F. Wang, D.P. Landau, Phys. Rev. Lett. 86, 2050 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    B. Pittel, J. Spencer, N.C. Wormald, J. Comb. Theory B 67, 111 (1996)CrossRefGoogle Scholar
  35. 35.
    A.K. Hartmann, M. Weigt, Phase Transitions in Combinatorial Optimization Problems (Wiley-VCH, Weinheim, 2005)Google Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Institut für Physik, Carl von Ossietzky Universität OldenburgOldenburgGermany

Personalised recommendations