The European Physical Journal Special Topics

, Volume 226, Issue 2, pp 161–176 | Cite as

Physical basis of information and the relation to entropy٭

Regular Article
Part of the following topical collections:
  1. Information in Physics and Beyond

Abstract

We discuss the relation between entropy and information from the physicists point of view differing between bound and free information. The quantitative physical aspects of information flow are given by flows of entropy, which are closely related to the reduction of uncertainty and the predictability of events. Free information is considered as a quantity, which has intrinsic non – physical components, and is originally created by selforganization and evolution. Bound and free information are both represented by a matter carrier but not as tight – bounded like mass or energy. Free information is connected with information – processing; it is introduced as a binary relation between a sender and a receiver, which may have different carriers, it is essentially characterized by symbolic representations. Processing free information is originally created by selforganization on the early earth and is connected with the origin of life, therefore it is always at least indirectly related to living systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Ebeling, R. Feistel, Physik der Selbstorganisation und Evolution (Akademie-Verlag, Berlin, 1982, 1986, 1990)Google Scholar
  2. 2.
    W. Ebeling, R. Feistel, Selforganization of Symbols and Information, Chapter 9 in J.S. Nicolis, V. Bassos (eds.), Chaos, Information Processing and Praradoxical Games: The Legacy of J.S. Nicolis (World Scientific, Singapore, 2015)Google Scholar
  3. 3.
    R. Feistel, W. Ebeling, Evolution of Complex Systems (Dt. Verlag der Wiss. Berlin 1989; Kluwer Academic Publishers Dordrecht/Boston/London, 1989)Google Scholar
  4. 4.
    R. Feistel, W. Ebeling, Physics of selforganization and evolution (Wiley – VCH, Weinheim, 2011)Google Scholar
  5. 5.
    M. Eigen, Selforganization of matter and the evolution of biological macromolecules, Naturwissenschaften 58, 465 (1971)ADSCrossRefGoogle Scholar
  6. 6.
    M. Eigen, W. Gardiner, P. Schuster, R. Winkler-Oswatitsch, The origin of genetic information, Scientific American 244, 88 (1981)CrossRefGoogle Scholar
  7. 7.
    M. Eigen, The origin of genetic information, Origins Life Evol. Biospheres 24, 241 (1994)ADSGoogle Scholar
  8. 8.
    M. Eigen, From strange simplicity to complex familiarity, A treatise on matter, information, life and thought (Oxford University Press, Oxford, 2013)Google Scholar
  9. 9.
    M. Eigen, P. Schuster, The hypercycle. A principle of natural self-organization. Part A: Emergence of the hypercycle, Naturwissenschaften 64, 541 (1977)ADSCrossRefGoogle Scholar
  10. 10.
    H. Haken, Information and Selforganization (Springer, Berlin, 1988)Google Scholar
  11. 11.
    H. Haken, M. Haken-Krell, Information and selforganization, A macroscopic approach to complex systems (Springer, Berlin, 1988)Google Scholar
  12. 12.
    H. Haken, J. Portugali, Information Adaptation: The Interplay Between Shannon Information and Semantic Information in Cognition (Springer, 2015)Google Scholar
  13. 13.
    M.V. Volkenstein, Entropy and information (Birkhäuser, Basel, 2009)Google Scholar
  14. 14.
    M. Burgin, Theory of Information: Fundamentality, Diversity and Unification (World Scientific, Singapore, 2010)Google Scholar
  15. 15.
    P.C. Marijuan et al., Foundations of Information Science, fis@listas.unizar.esGoogle Scholar
  16. 16.
    R. Landauer, Information is physical, Physics Today 91, 23 (1991)CrossRefGoogle Scholar
  17. 17.
    R. Landauer, The physical nature of information, Phys. Lett. A 217, 188 (1996)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    R. Penrose, Some remarks on Gravity and Quantum Mechanics, in Quantum Structure of Space and Time, edited by M.J. Duff, C.J. Isham, (Cambridge University Press, 1982)Google Scholar
  19. 19.
    J.A. Wheeler, It from bit. In: Proc. Int. Symp. Foundations Quantum Machanics (Tokyo, 1989)Google Scholar
  20. 20.
    D. John Barrow, C.W. PaulDavies, C. Harper jr. (eds.), Science and Ultimate Reality. Quantum Theory, Cosmology, and Complexity (Cambridge University Press, 2004)Google Scholar
  21. 21.
    J.D. Bekenstein, Lett. Nuovo Cim. 11, 467 (1974)ADSCrossRefGoogle Scholar
  22. 22.
    S. Kauffman, Investigations (Oxford University Press, 2000)Google Scholar
  23. 23.
    T. Stonier, Information and the Internal Structure of the Universe (Springer, Berlin, Heidelberg, 1992)Google Scholar
  24. 24.
    S. Lloyd, Programming the Universe (Vintage (Random House), New York, 2007)Google Scholar
  25. 25.
    W. Ebeling, J. Freund, F. Schweitzer, Entropie, Struktur, Komplexität (Teubner-Verlag, Stuttgart, 1998)Google Scholar
  26. 26.
    C. Shannon, Predictions and Entropy of Printed English, Bell Systems Tech. 30, 50 (1951)CrossRefMATHGoogle Scholar
  27. 27.
    A.N. Kolmogorov, Dokl. Akad. Nauk USSR 124, 754 (1959)Google Scholar
  28. 28.
    A.N. Kolmogorov, IEEE Transactions Inf. Theory 14, 14 (1968)CrossRefGoogle Scholar
  29. 29.
    B. Ya. Sinai, Dokl. Akad. Nauk USSR 124, 768 (1959)MathSciNetGoogle Scholar
  30. 30.
    B. Ya. Sinai, Dokl. Akad. Nauk USSR 125, 1200 (1959)MathSciNetGoogle Scholar
  31. 31.
    H.G. Schuster, Deterministic Chaos (VCH Wiley, 1988)Google Scholar
  32. 32.
    L. Gatlin, Information Theory and the Living System (Columbia University Press, New York, 1972)Google Scholar
  33. 33.
    G. von Heijne, Sequence Analysis in Molecular Biology (Academic press, San Diego, 1987)Google Scholar
  34. 34.
    H.P. Yockey, Information Theory and Molecular Biology (University Press, Cambridge, 1992)Google Scholar
  35. 35.
    W. Hofkirchner (Ed.), The quest for a unified theory of information: Proc. of the 2nd Int. Conf. on the Foundations of Information Science (Gordon and Breach, Amsterdam, 1999)Google Scholar
  36. 36.
    L. Molgedey, W. Ebeling, Local order, entropy and predictability of financial time series, Eur. Phys. J. B 15, 733 (2000)ADSCrossRefGoogle Scholar
  37. 37.
    R. Steuer et al., Entropy and local uncertainty of data from sensory neurons, Phys. Rev. E 64, 061911-1 (2001)ADSCrossRefGoogle Scholar
  38. 38.
    W. Ebeling, M.V. Volkenstein, Entropy and the evoluion of biological information, Physica 163, 398 (1990)CrossRefGoogle Scholar
  39. 39.
    M. Conrad, W. Ebeling, Michael Volkenstein's evolutionary thinking and the structure of fitness landscapes, BioSystems 27, 125 (1992)CrossRefGoogle Scholar
  40. 40.
    W. Ebeling, Relation between various entropy concepts and the valoric interpretation, Physica A 182, 108 (1992)ADSCrossRefGoogle Scholar
  41. 41.
    W. Ebeling, Entropy and information if processes of selforganization: uncertainty and predictability, Physica A 194, 563 (1993)ADSCrossRefGoogle Scholar
  42. 42.
    L. Szilard, über die Entropievermehrung in einem thermodynamischen System bei Eingriffen intelligenter Wesen, Z. Physik 53, 840 (1929)ADSCrossRefMATHGoogle Scholar
  43. 43.
    R. Stratonovich, On the problem of the valuabilty of information, In: I. Lamprecht, A.I. Zotin, Thermodynamics and regulation in biological processes (De Gryter, Berlin 1985)Google Scholar
  44. 44.
    D.S. Chernavsky, Synergetics and information (in Russ.) (Nauka, Moskva, 2001)Google Scholar
  45. 45.
    W. Ebeling, G. Nicolis, Word frequency and symbolic sequences: A dynamical perspective, Chaos, Solitons & Fractals 2, 635 (1992)ADSCrossRefMATHGoogle Scholar
  46. 46.
    W. Ebeling, T. Pöschel, K.F. Albrecht, Int. J. Bifurcation Chaos 5, 51 (1995)ADSCrossRefGoogle Scholar
  47. 47.
    W. Li, K. Kaneko, Europhys. Lett. 17, 655 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    H. Herzel, A.O. Schmitt, W. Ebeling, Phys. Rev. E 50, 5061 (1994)ADSCrossRefGoogle Scholar
  49. 49.
    M.A. Jimenez, R. Feistel, G. Diez-Martinez, Nonlin. Dyn. Psychol. Life Sci. 8, 445 (2004)Google Scholar
  50. 50.
    M.A. Jimenez-Montano, M. He, Irreplaceable mino acids and reduced alphabets, in I. Manndoiu et al., Bioinformatics (Springer, Berlin, 2009)Google Scholar
  51. 51.
    M.A. Jimenez-Montano et al., Codon information value and codon transition – probability, Physica A 454, 117 (2016)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    R. Feistel, W. Ebeling, Entropy and the Self-organization of Information and Value, Entropy 18, 193 (2016)ADSCrossRefGoogle Scholar
  53. 53.
    R. Feistel, Self-organisation of symbolic information, Eur. Phys. J. Special Topics (2016), Doi: 10.1140/epjst/e2016-60170-9Google Scholar
  54. 54.
    T. Asselmeyer, W. Ebeling, H. Rosé, Smoothing representation of fitness landscapes – the genotyp – phenotype map of evolution, BioSystems 39, 63 (1996)CrossRefGoogle Scholar
  55. 55.
    T. Asselmeyer, W. Ebeling, H. Rosé, Evolutionary strategies of optimization, Phys. Rev. E 56, 1171 (1997)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Institute of Physics, Humboldt UniversityBerlinGermany

Personalised recommendations