Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 837–847 | Cite as

The role of cracks in the crystal nucleation process of amorphous griseofulvin

  • J. F. Willart
  • E. Dudognon
  • A. Mahieu
  • M. Eddleston
  • W. Jones
  • M. Descamps
Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

In this paper we have investigated the recrystallization properties of amorphous griseofulvin obtained by melt quenching. We have shown that the maximum nucleation rates of crystalline forms 2 and 3 are located around the glass transition temperature. However, it appears that these nucleation rates are strongly increased by the sudden formation of cracks into the amorphous solid during deep quenches below Tg. Suitable thermal treatments have revealed that these cracks strongly promote the development of crystalline nuclei, but do not produce the nuclei themselves. The investigations have been performed by differential scanning calorimetry and by thermal microscopy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.C. Hancock, G. Zografi, Characteristics and significance of the amorphous state in pharmaceutical systems, J. Pharm. Sci. 86, 1 (1997)CrossRefGoogle Scholar
  2. 2.
    D.Q.M. Craig, P.G. Royall, V.L. Kett, M.L. Hopton, The relevance of the amorphous state to pharmaceutical dosage forms: glassy drugs and freeze dried systems, Int. J. Pharm. 179, 179 (1999)CrossRefGoogle Scholar
  3. 3.
    P. Tripathi, M. Romanini, J.L. Tamarit, R. MacOvez, Collective relaxation dynamics and crystallization kinetics of the amorphous Biclotymol antiseptic, Int. J. Pharm. 495, 420 (2015)CrossRefGoogle Scholar
  4. 4.
    K. Adrjanowicz, K. Koperwas, M. Tarnacka, K. Grzybowska, K. Niss, J. Pionteck, M. Paluch, Changing the tendency of glass-forming liquid to crystallize by moving along different isolines in the T-p phase diagram, Cryst. Growth and Des. 16, 6263 (2016)CrossRefGoogle Scholar
  5. 5.
    K. Adrjanowicz, D. Zakowiecki, K. Kaminski, L. Hawelek, K. Grzybowska, M. Tarnacka, M. Paluch, K. Cal, Molecular dynamics in supercooled liquid and glassy states of antibiotics: Azithromycin, clarithromycin and roxithromycin studied by dielectric spectroscopy. Advantages given by the amorphous state, Mol. Pharm. 9, 1748 (2012)CrossRefGoogle Scholar
  6. 6.
    D.A. Porter, K.E. Easterling, M. Sherif, Phase Transformations in Metals and Alloys, Third Edition (Taylor & Francis, 2009)Google Scholar
  7. 7.
    L. Yu, Surface mobility of molecular glasses and its importance in physical stability, Adv. Drug Delivery Rev. 100, 3 (2016)CrossRefGoogle Scholar
  8. 8.
    Q. Shi, T. Cai, Fast Crystal Growth of Amorphous Griseofulvin: Relations between Bulk and Surface Growth Modes, Cryst. Growth Des. 16, 3279 (2016)CrossRefGoogle Scholar
  9. 9.
    Y. Sun, L. Zhu, T. Wu, T. Cai, E.M. Gunn, L. Yu, Stability of Amorphous Pharmaceutical Solids: Crystal Growth Mechanisms and Effect of Polymer Additives, AAPS J. 14, 380 (2012)CrossRefGoogle Scholar
  10. 10.
    O. Delcourt, M. Descamps, H.J. Hilhorst, Size effect in a nucleation and growth transformation, Ferroelectrics 124, 109 (1991)CrossRefGoogle Scholar
  11. 11.
    M. Descamps, J.F. Willart, O. Delcourt, M. Bertault, Extrinsic and intrinsic size effects on the phase tranformation and metastability of a glassy crystal, Therm. Acta 266, 49 (1995)CrossRefGoogle Scholar
  12. 12.
    M. Descamps, E. Dudognon, Crystallization from the amorphous state: Nucleation-growth decoupling, polymorphism interplay, and the role of interfaces, J. Pharm. Sci. 103, 2615 (2014)CrossRefGoogle Scholar
  13. 13.
    V. Legrand, M. Descamps, C. Alba-Simionesco, Glass-forming meta-toluidine: A thermal and structural analysis of its crystalline polymorphism and devitrification, Therm. Acta 307, 77 (1997)CrossRefGoogle Scholar
  14. 14.
    A. Mahieu, J.-F. Willart, E. Dudognon, M. Eddleston, W. Jones, M. Descamps, On the polymorphism of griseofulvin: Identification of two additional polymorphs, J. Pharm. Sci. 102, 462 (2013)CrossRefGoogle Scholar
  15. 15.
    K. Kothari, V. Ragoonanan, R. Suryanarayanan, Influence of molecular mobility on the physical stability of amorphous pharmaceuticals in the supercooled and glassy states, Mol. Pharm. 11, 3048 (2014)CrossRefGoogle Scholar
  16. 16.
    M. Mehta, K. Kothari, V. Ragoonanan, R. Suryanarayanan, Effect of Water on Molecular Mobility and Physical Stability of Amorphous Pharmaceuticals, Mol. Pharm. 13, 1339 (2016)CrossRefGoogle Scholar
  17. 17.
    L. Zhu, J. Jona, K. Nagapudi, T. Wu, Fast Surface Crystallization of Amorphous Griseofulvin Below Tg, Pharm. Res. 27, 1558 (2010)CrossRefGoogle Scholar
  18. 18.
    D.J. Jarmer, C.S. Lengsfeld, K.S. Anseth, T.W. Randolph, Supercritical fluid crystallization of griseofulvin: Crystal habit modification with a selective growth inhibitor, J. Pharm. Sci. 94, 2688 (2005)CrossRefGoogle Scholar
  19. 19.
    A.A. Elamin, C. Ahlneck, G. Alderborn, C. Nyström, Increased metastable solubility of milled griseofulvin, depending on the formation of a disordered surface structure, Int. J. Pharm. 111, 159 (1994)CrossRefGoogle Scholar
  20. 20.
    E. Tombari, S. Presto, G.P. Johari, R.M. Shanker, Molecular mobility, thermodynamics and stability of griseofulvin’s ultraviscous and glassy states from dynamic heat capacity, Pharm. Res. 25, 902 (2007)CrossRefGoogle Scholar
  21. 21.
    E. Dudognon, F. Danède, M. Descamps, N.T. Correia, Evidence for a new crystalline phase of racemic ibuprofen, Pharm. Res. 25, 2853 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Bhugra, R. Shmeis, M.J. Pikal, Role of mechanical stress in crystallization and relaxation behavior of amorphous indomethacin, J. Pharm. Sci. 97, 4446 (2008)CrossRefGoogle Scholar
  23. 23.
    M. Descamps, J.-F. Willart, in Disordered Pharmaceutical Materials (Wiley-VCH Verlag GmbH & Co. KGaA, 2016), p. 1Google Scholar
  24. 24.
    M. El Adib, M. Descamps, N.B. Chanh, X-ray kinetic study of glassy crystal formation in adamantane derivatives: TTT curves and crystal size effect, Phase Trans. 14, 85 (1989)CrossRefGoogle Scholar
  25. 25.
    L. Zhu, C.W. Brian, S.F. Swallen, P.T. Straus, M.D. Ediger, L. Yu, Surface self-diffusion of an organic glass, Phys. Rev. Lett. 106, 256103 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    S. Capaccioli, K.L. Ngai, M. Paluch, D. Prevosto, Mechanism of fast surface self-diffusion of an organic glass, Phys. Rev. E 86, 51503 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  • J. F. Willart
    • 1
    • 2
  • E. Dudognon
    • 1
    • 2
  • A. Mahieu
    • 1
    • 2
  • M. Eddleston
    • 3
  • W. Jones
    • 3
  • M. Descamps
    • 1
    • 2
  1. 1.Université Lille Nord de FranceLilleFrance
  2. 2.USTL UMET (Unité Matériaux et Transformations), UMR CNRS 8207Villeneuve d’AscqFrance
  3. 3.Department of ChemistryUniversity of CambridgeCambridge CB2 1EWUK

Personalised recommendations