The European Physical Journal Special Topics

, Volume 226, Issue 15, pp 3199–3210 | Cite as

Experimental study of the robust global synchronization of Brockett oscillators

Regular Article
Part of the following topical collections:
  1. Challenges in the Analysis of Complex Systems: Prediction, Causality and Communication

Abstract

This article studies the experimental synchronization of a family of a recently proposed oscillator model, i.e. the Brockett oscillator [R. Brockett, Synchronization without periodicity, in Mathematical Systems Theory, A Volume in Honor of U. Helmke, edited by K. Huper, J. Trumpf (CreateSpace, Seattle, USA, 2013), pp. 65–74]. Due to its structural property, Brockett oscillator can be considered as a promising benchmark nonlinear model for investigating synchronization and the consensus phenomena. Our experimental setup consists of analog circuit realizations of a network of Brockett oscillators. Experimental results obtained in this work correspond to the prior theoretical findings.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.H. Strogatz, Sync: how order emerges from chaos in the universe, nature, and daily life (Hyperion, 2003) Google Scholar
  2. 2.
    H. Ahmed, R. Ushirobira, D. Efimov, W. Perruquetti, IEEE Trans. Autom. Control 61, 1625 (2016) CrossRefGoogle Scholar
  3. 3.
    H. Ahmed, R. Ushirobira, D. Efimov, W. Perruquetti, On conditions of robust synchronization for multistable systems, in 2015 European Control Conference (ECC) (IEEE, 2015), pp. 181–185 Google Scholar
  4. 4.
    R. Sepulchre, D. Paley, N. Leonard, Collective motion and oscillator synchronization, in Cooperative control (Springer, 2005), pp. 189–205 Google Scholar
  5. 5.
    F. Dörfler, M. Chertkov, F. Bullo, Proc. Natl. Acad. Sci. 110, 2005 (2013) ADSCrossRefGoogle Scholar
  6. 6.
    T. Bountis, Eur. Phys. J. Special Topics 225, 1017 (2016) ADSCrossRefGoogle Scholar
  7. 7.
    A. Loría, IEEE Transactions on Circuits and Systems II: Express Briefs 57, 213 (2010) CrossRefGoogle Scholar
  8. 8.
    A. Loría, IEEE Transactions on Circuits and Systems II: Express Briefs 56, 674 (2009) CrossRefGoogle Scholar
  9. 9.
    A. Rodriguez, J. De Leon, L. Fridman, Chaos Solitons Fractals 42, 3219 (2009) ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    A. Rodríguez, J. De León, L. Fridman, Int. J. Non-Linear Mech. 43, 948 (2008) CrossRefGoogle Scholar
  11. 11.
    D. Efimov, J. Schiffer, R. Ortega, Int. J. Control 89, 909 (2016) CrossRefGoogle Scholar
  12. 12.
    J. Schiffer, T. Seel, J. Raisch, T. Sezi, A consensus-based distributed voltage control for reactive power sharing in microgrids, in 2014 European Control Conference (ECC) (IEEE, 2014), pp. 1299–1305 Google Scholar
  13. 13.
    A.L. Fradkov, A.Y. Markov, IEEE Trans. Circ. Syst. I: Fundam. Theor. Appl. 44, 905 (1997) CrossRefGoogle Scholar
  14. 14.
    B. Andrievsky, S. Tomashevich, A.L. Fradkov, K. Amelin, IFAC-PapersOnLine 48, 85 (2015) CrossRefGoogle Scholar
  15. 15.
    H. Ahmed, R. Ushirobira, D. Efimov, J. Theor. Biol. 387, 206 (2015) CrossRefGoogle Scholar
  16. 16.
    D. Efimov, Biol. Cybern. 109, 95 (2015) CrossRefGoogle Scholar
  17. 17.
    R. Olfati-Saber, R.M. Murray, IEEE Trans. Autom. Control 49, 1520 (2004) CrossRefGoogle Scholar
  18. 18.
    R. Olfati-Saber, J.A. Fax, R.M. Murray, Proc. IEEE 95, 215 (2007) CrossRefGoogle Scholar
  19. 19.
    E. Panteley, A. Loría, Synchronisation and emergent behaviour in networks of heterogeneous systems: A control theory perspective, in Nonlinear Systems (Springer, 2017), pp. 81–102 Google Scholar
  20. 20.
    E. Steur, C. Murguia, R.H. Fey, H. Nijmeijer, Int. J. Bifurc. Chaos 26, 1650111 (2016) CrossRefGoogle Scholar
  21. 21.
    M. Magistris, M. Bernardo, S. Manfredi, C. Petrarca, S. Yaghouti, Int. J. Circ. Theor. Appl. 44, 1551 (2016) CrossRefGoogle Scholar
  22. 22.
    L.Q. English, Z. Zeng, D. Mertens, Phys. Rev. E 92, 052912 (2015) ADSCrossRefGoogle Scholar
  23. 23.
    D. Saha, P. Saha, A. Ray, A. Roychowdhury, Annu. Rev. Chaos Theor. Bifurc. Dyn. Syst. 6, 1 (2016) Google Scholar
  24. 24.
    C.R. Williams, F. Sorrentino, T.E. Murphy, R. Roy, Chaos: Interdiscip. J. Nonlinear Sci. 23, 043117 (2013) CrossRefGoogle Scholar
  25. 25.
    C.R. Williams, T.E. Murphy, R. Roy, F. Sorrentino, T. Dahms, E. Schöll, Phys. Rev. Lett. 110, 064104 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    R. Brockett, Synchronization without periodicity, in Mathematical Systems Theory, A Volume in Honor of U. Helmke, edited by K. Huper, J. Trumpf (CreateSpace, Seattle, USA, 2013), pp. 65–74 Google Scholar
  27. 27.
    H. Ahmed, R. Ushirobira, D. Efimov, IFAC-PapersOnLine 49, 142 (2016) MathSciNetCrossRefGoogle Scholar
  28. 28.
    H. Ahmed, R. Ushirobira, D. Efimov, Robust global synchronization of brockett oscillators, Technical report, Inria Lille – Nord Europe, Nov. 2016, available online at: https://hal.inria.fr/hal-01391120
  29. 29.
    H. Ahmed, R. Ushirobira, D. Efimov, L. Fridman, Y. Wang, IFAC-PapersOnLine, 2017, to appear Google Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Mechanical, Aerospace & Automotive Engineering, Coventry UniversityCoventryUK
  2. 2.Inria, Non-A teamVilleneuve d’AscqFrance

Personalised recommendations