The European Physical Journal Special Topics

, Volume 226, Issue 13, pp 2923–2944

Modular and efficient ozone systems based on massively parallel chemical processing in microchannel plasma arrays: performance and commercialization

Regular Article
  • 13 Downloads
Part of the following topical collections:
  1. Technological Applications of Microplasmas

Abstract

Plasmachemical systems based on the production of a specific molecule (O3) in literally thousands of microchannel plasmas simultaneously have been demonstrated, developed and engineered over the past seven years, and commercialized. At the heart of this new plasma technology is the plasma chip, a flat aluminum strip fabricated by photolithographic and wet chemical processes and comprising 24–48 channels, micromachined into nanoporous aluminum oxide, with embedded electrodes. By integrating 4–6 chips into a module, the mass output of an ozone microplasma system is scaled linearly with the number of modules operating in parallel. A 115 g/hr (2.7 kg/day) ozone system, for example, is realized by the combined output of 18 modules comprising 72 chips and 1,800 microchannels. The implications of this plasma processing architecture for scaling ozone production capability, and reducing capital and service costs when introducing redundancy into the system, are profound. In contrast to conventional ozone generator technology, microplasma systems operate reliably (albeit with reduced output) in ambient air and humidity levels up to 90%, a characteristic attributable to the water adsorption/desorption properties and electrical breakdown strength of nanoporous alumina. Extensive testing has documented chip and system lifetimes (MTBF) beyond 5,000 hours, and efficiencies >130 g/kWh when oxygen is the feedstock gas. Furthermore, the weight and volume of microplasma systems are a factor of 3-10 lower than those for conventional ozone systems of comparable output. Massively-parallel plasmachemical processing offers functionality, performance, and commercial value beyond that afforded by conventional technology, and is currently in operation in more than 30 countries worldwide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.H. King, E.B. Shotts, Jr., R.E. Wooley, K.G. Porter, Appl. Environ. Microbiol. 54, 3023 (1988)Google Scholar
  2. 2.
    F. Bichai, P. Payment, B. Barbeau, Can. J. Microbiol. 54, 509 (2008)CrossRefGoogle Scholar
  3. 3.
    M.T. Orta de Velásquez, M.N. Rojas-Valencia, A. Ayala, Ozone Sci. Eng. 30, 367 (2008)CrossRefGoogle Scholar
  4. 4.
    J. Kitayama, M. Kuzumoto, J. Phys. D 30, 2453 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    C. Gottschalk, J.A. Libra, A. Saupe, Ozonation of Water and Waste Water, 2nd edn. (Wiley-VCH, Germany, 2010)Google Scholar
  6. 6.
    L. Restaino, E.W. Frampton, J.B. Hemphill, P. Palnikar, Appl. Environ. Microbiol. 61, 3471 (1995)Google Scholar
  7. 7.
    G.A. Shin, M.D. Sobsey, Appl. Environ. Microbiol. 69, 3975 (2003)CrossRefGoogle Scholar
  8. 8.
    K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D 39, R55 (2006)ADSCrossRefGoogle Scholar
  9. 9.
    J.G. Eden, S.-J. Park, Microcavity and Microchannel Plasmas: General Characteristics and Emerging Applications, M. Bonitz et al. (eds.), Complex Plasmas, Springer Series on Atomic, Optical, and Plasma Physics (Springer, Switzerland, 2014)Google Scholar
  10. 10.
    K.S. Kim, S.-J. Park, J.G. Eden, J. Phys. D 41, 012004 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    K.S. Kim, S.-J. Park, J.G. Eden, IEEE Trans. Plasma Sci. 39, 2698 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    M.H. Kim, J.H. Cho, S.B. Ban, R.Y. Choi, E.J. Kwon, S.-J. Park, J.G. Eden, J. Phys. D 46, 305201 (2013)CrossRefGoogle Scholar
  13. 13.
    J.G. Eden, S.-J. Park, J.H. Cho, S.H. Sung, M.H. Kim, U.S. Patent No. 8, 968, 668 (March 3, 2015)Google Scholar
  14. 14.
    J.G. Eden, M.H. Kim, J.H. Cho, S.-J. Park, PCT WO2015102689 A3 (August 6, 2015)Google Scholar
  15. 15.
    B. Eliasson, M. Hirth, U. Kogelschatz, J. Phys. D 20, 1421 (1987)ADSCrossRefGoogle Scholar
  16. 16.
    U. Kogelschatz, B. Eliasson, M. Hirth, Ozone Sci. Eng. 10, 367 (1988)CrossRefGoogle Scholar
  17. 17.
    U. Kogelschatz, B. Eliasson, W. Egli, Pure Appl. Chem. 71, 1819 (1999)CrossRefGoogle Scholar
  18. 18.
    U. Kogelschatz, Contrib. Plasma Phys. 47, 80 (2007)ADSCrossRefGoogle Scholar
  19. 19.
    S. Kotay, W. Chai, W. Guilford, K. Barry, A.J. Mathers, Appl. Environ. Microbiol. 83, e03327-16 (2017)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.EP Purification, Inc., 2105 West Park CourtChampaignUSA
  2. 2.Laboratory for Optical Physics and Engineering, Department of Electrical and Computer Engineering, University of IllinoisUrbanaUSA

Personalised recommendations