Skip to main content

Advertisement

Log in

Modular and efficient ozone systems based on massively parallel chemical processing in microchannel plasma arrays: performance and commercialization

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Plasmachemical systems based on the production of a specific molecule (O3) in literally thousands of microchannel plasmas simultaneously have been demonstrated, developed and engineered over the past seven years, and commercialized. At the heart of this new plasma technology is the plasma chip, a flat aluminum strip fabricated by photolithographic and wet chemical processes and comprising 24–48 channels, micromachined into nanoporous aluminum oxide, with embedded electrodes. By integrating 4–6 chips into a module, the mass output of an ozone microplasma system is scaled linearly with the number of modules operating in parallel. A 115 g/hr (2.7 kg/day) ozone system, for example, is realized by the combined output of 18 modules comprising 72 chips and 1,800 microchannels. The implications of this plasma processing architecture for scaling ozone production capability, and reducing capital and service costs when introducing redundancy into the system, are profound. In contrast to conventional ozone generator technology, microplasma systems operate reliably (albeit with reduced output) in ambient air and humidity levels up to 90%, a characteristic attributable to the water adsorption/desorption properties and electrical breakdown strength of nanoporous alumina. Extensive testing has documented chip and system lifetimes (MTBF) beyond 5,000 hours, and efficiencies >130 g/kWh when oxygen is the feedstock gas. Furthermore, the weight and volume of microplasma systems are a factor of 3-10 lower than those for conventional ozone systems of comparable output. Massively-parallel plasmachemical processing offers functionality, performance, and commercial value beyond that afforded by conventional technology, and is currently in operation in more than 30 countries worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.H. King, E.B. Shotts, Jr., R.E. Wooley, K.G. Porter, Appl. Environ. Microbiol. 54, 3023 (1988)

    Google Scholar 

  2. F. Bichai, P. Payment, B. Barbeau, Can. J. Microbiol. 54, 509 (2008)

    Article  Google Scholar 

  3. M.T. Orta de Velásquez, M.N. Rojas-Valencia, A. Ayala, Ozone Sci. Eng. 30, 367 (2008)

    Article  Google Scholar 

  4. J. Kitayama, M. Kuzumoto, J. Phys. D 30, 2453 (1997)

    Article  ADS  Google Scholar 

  5. C. Gottschalk, J.A. Libra, A. Saupe, Ozonation of Water and Waste Water, 2nd edn. (Wiley-VCH, Germany, 2010)

  6. L. Restaino, E.W. Frampton, J.B. Hemphill, P. Palnikar, Appl. Environ. Microbiol. 61, 3471 (1995)

    Google Scholar 

  7. G.A. Shin, M.D. Sobsey, Appl. Environ. Microbiol. 69, 3975 (2003)

    Article  Google Scholar 

  8. K.H. Becker, K.H. Schoenbach, J.G. Eden, J. Phys. D 39, R55 (2006)

    Article  ADS  Google Scholar 

  9. J.G. Eden, S.-J. Park, Microcavity and Microchannel Plasmas: General Characteristics and Emerging Applications, M. Bonitz et al. (eds.), Complex Plasmas, Springer Series on Atomic, Optical, and Plasma Physics (Springer, Switzerland, 2014)

  10. K.S. Kim, S.-J. Park, J.G. Eden, J. Phys. D 41, 012004 (2008)

    Article  ADS  Google Scholar 

  11. K.S. Kim, S.-J. Park, J.G. Eden, IEEE Trans. Plasma Sci. 39, 2698 (2011)

    Article  ADS  Google Scholar 

  12. M.H. Kim, J.H. Cho, S.B. Ban, R.Y. Choi, E.J. Kwon, S.-J. Park, J.G. Eden, J. Phys. D 46, 305201 (2013)

    Article  Google Scholar 

  13. J.G. Eden, S.-J. Park, J.H. Cho, S.H. Sung, M.H. Kim, U.S. Patent No. 8, 968, 668 (March 3, 2015)

  14. J.G. Eden, M.H. Kim, J.H. Cho, S.-J. Park, PCT WO2015102689 A3 (August 6, 2015)

  15. B. Eliasson, M. Hirth, U. Kogelschatz, J. Phys. D 20, 1421 (1987)

    Article  ADS  Google Scholar 

  16. U. Kogelschatz, B. Eliasson, M. Hirth, Ozone Sci. Eng. 10, 367 (1988)

    Article  Google Scholar 

  17. U. Kogelschatz, B. Eliasson, W. Egli, Pure Appl. Chem. 71, 1819 (1999)

    Article  Google Scholar 

  18. U. Kogelschatz, Contrib. Plasma Phys. 47, 80 (2007)

    Article  ADS  Google Scholar 

  19. S. Kotay, W. Chai, W. Guilford, K. Barry, A.J. Mathers, Appl. Environ. Microbiol. 83, e03327-16 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. -J. Park or J. G. Eden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M.H., Cho, J.H., Park, S.J. et al. Modular and efficient ozone systems based on massively parallel chemical processing in microchannel plasma arrays: performance and commercialization. Eur. Phys. J. Spec. Top. 226, 2923–2944 (2017). https://doi.org/10.1140/epjst/e2016-60355-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60355-8

Navigation