The European Physical Journal Special Topics

, Volume 226, Issue 13, pp 2965–2977

Diagnostics of an AC driven atmospheric pressure non-thermal plasma jet and its use for radially directed jet array

Regular Article
Part of the following topical collections:
  1. Technological Applications of Microplasmas


An alternating current atmospheric pressure plasma jet is generated with noble gas or noble gas/oxygen admixture as working gas. A “core plasma filament” is observed at the center of the dielectric tube and extends to the plasma jet at higher peak-to-peak voltages. This type of plasma jet is believed to be of the same nature with the reported plasma bullet driven by pulsed DC power sources. Double current probes are used to assess the speed of the plasma bullet and show that the speed is around 104–105 m/s. The time dependence of the downstream bullet speed is attributed to the gas heating and in turn the increase of the reduced electric field E/N. Optical emission spectra show the dependence of helium and oxygen emission intensities on the concentration of oxygen additive in the carrier gas, with peak values found at 0.5% O2. Multiple radial jets are realized on dielectric tubes of different sizes. As a case study, one of these multi-jet devices is used to treat B. aureus on the inner surface of a plastic beaker and is shown to be more effective than a single jet.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Fridman, A. Shereshevsky, M.M. Jost, A.D. Brooks, A. Fridman, A. Gutsol, V. Vasilets, G. Friedman, Floating electrode dielectric barrier discharge plasma in air promoting apoptotic behavior in melanoma skin cancer cell lines, Plasma Chem. Plasma Process. 27, 163 (2007)CrossRefGoogle Scholar
  2. 2.
    M. Lu, S.J. Park, B.T. Cunningham, J.G. Eden, Low temperature plasma channels generated in microcavity trenches with widths of 20 m and aspect ratios as large as 10 4, Appl. Phys. Lett. 92, 101928 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    J.F. Kolb, A.A.H. Mohamed, R.O. Price, R.J. Swanson, A.Bowman, R.L. Chiavarini, M. Stacey, K.H. Schoenbach, Cold atmospheric pressure air plasma jet for medical applications, Appl. Phys. Lett. 92, 241501 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    D. Dobrynin, K. Arjunan, A. Fridman, G. Friedman, A.M. Clyne, Direct and controllable nitric oxide delivery into biological media and living cells by a pin-to-hole spark discharge (PHD) plasma, J. Phys. D: Appl. Phys. 44, 075201 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    T. Verreycken, R.M. Van der Horst, A.H.F.M. Baede, E.M. Van Veldhuizen, P.J. Bruggeman, Time, spatially resolved LIF of OH in a plasma filament in atmospheric pressure He–H2O, J. Phys. D: Appl. Phys. 45, 045205 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    L.G. Meng, H.F. Liang, C.L. Liu, Z.H. Liang, A line array of microplasma devices with coplanar electrodes operating in argon, IEEE Transactions on Plasma Science 36, 2788 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    F. Iza, J. Hopwood, Split-ring resonator microplasma: microwave model, plasma impedance and power efficiency, Plasma Sources Sci. Technol. 14, 397 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    U. Kogelschatz, Dielectric-barrier discharges: their history, discharge physics, and industrial applications, Plasma Chem. Plasma Process. 23, 1 (2003)CrossRefGoogle Scholar
  9. 9.
    M.A. Malik, K.H. Schoenbach, A novel pulsed corona discharge reactor based on surface streamers for NO conversion from N2-O2 mixture gases, Int. J. Plasma, Environ. Sci. Technol. 5, 50 (2011)Google Scholar
  10. 10.
    P.H. Ceccato, O. Guaitella, M.R. Le Gloahec, A. Rousseau, Time-resolved nanosecond imaging of the propagation of a corona-like plasma discharge in water at positive applied voltage polarity, J. Phys. D: Appl. Phys. 43, 175202 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    T. Shao, C. Zhang, R. Wang, Y. Zhou, Q. Xie, Z. Fang, Comparison of atmospheric-pressure He and Ar plasma jets driven by microsecond pulses, IEEE Transactions on Plasma Science 43, 726 (2015)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Cao, J.L. Walsh, M.G. Kong, Appl. Phys. Lett. 94, 021501 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    J.Y. Kim, J. Ballato, S.-O. Kim, Plasma Processes Polym. 9, 253 (2012)CrossRefGoogle Scholar
  14. 14.
    P. Sun, J. Kim, S.-J. Park, J.G. Eden, IEEE International Conference on Plasma Science (ICOPS), June 16 2013, San Francisco, California, USA (2013)Google Scholar
  15. 15.
    W.-C. Zhu, Q. Li, X.-M. Zhu, Y.-K. Pu, J. Phys. D: Appl. Phys. 42, 202002 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    N. Jiang, A. Ji, Z. Cao, J. Appl. Phys. 106, 013308 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    S.-Z. Li, W.-T. Huang, D. Wang, IEEE Trans. Plasma Sci. 37, 1825 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    Z. Cao, Q.Y. Ni, M.G. Kong, J. Phys. D: Appl. Phys. 42, 222003 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    V.S. Johnson, W. Zhu, R. Wang, J. Lo Re, S. Sivaram, J. Mahoney, J.L. Lopez, IEEE Trans. Plasma Sci. 39, 2360 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    S. Bornholdt, M. Wolter, H. Kersten, Characterization of an atmospheric pressure plasma jet for surface modification and thin film deposition, Eur. Phys. J. D 60, 653 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, High-speed photographs of a dielectric barrier atmospheric pressure plasma jet, IEEE Trans. Plasma Sci. 33, 310 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    X. Lu, M. Laroussi, V. Puech, On atmospheric-pressure non-equilibrium plasma jets and plasma bullets, Plasma Sources Sci. Technol. 21, 034005 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    M. Teschke, J. Kedzierski, E.G. Finantu-Dinu, D. Korzec, J. Engemann, High-speed photographs of a dielectric barrier atmospheric pressure plasma jet, IEEE Trans. Plasma Sci. 33, 310 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    W. Zhu, 6th International Workshop on Microplasmas, April 3, 2011, Paris, France (2011)Google Scholar
  25. 25.
    R. Foest, A. Ohl, K.D. Weltmann, Miniaturized non-thermal atmospheric pressure plasma jet: characterization of self-organized regimes, Plasma Phys. Control. Fusion 51, 124045 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    W. Zhu, J.L. Lopez, A dc non-thermal atmospheric-pressure plasma microjet, Plasma Sources Sci. Technol. 21, 034018 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    K. Niemi, J. Waskoenig, N. Sadeghi, T. Gans, D. O’Connell, The role of helium metastable states in radio-frequency driven helium-oxygen atmospheric pressure plasma jets: measurement and numerical simulation, Plasma Sources Sci. Technol. 20, 055005 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    N. Knake, S. Reuter, K. Niemi, V. Schulz-Von Der Gathen, J. Winter, Absolute atomic oxygen density distributions in the effluent of a microscale atmospheric pressure plasma jet, J. Phys. D: Appl. Phys. 41, 194006 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Liang, Y. Li, K. Sun, Q. Zhang, W. Li, W. Zhu, J. Zhang, J. Fang, Plasma Process. Polym. 12, 1069 (2015)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Applied Science and TechnologySaint Peter’s UniversityJersey City, NJUSA
  2. 2.Center for Microplasma Science and Technology, Saint Peter’s UniversityJersey City, NJUSA
  3. 3.Institute of Electrical Engineering, Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations