The European Physical Journal Special Topics

, Volume 226, Issue 13, pp 2911–2922

About the development of single microdischarges in dielectric barrier discharges in CO2 and CO2/N2 gas mixtures

DBD-MDs in CO2 and CO2/N2
Regular Article
  • 29 Downloads
Part of the following topical collections:
  1. Technological Applications of Microplasmas

Abstract

The conversion of carbon dioxide as one of the main greenhouse gases into carbon monoxide as a chemical feedstock is considered as so-called carbon capture usage technology. Recently it was shown, that the dissociation of carbon dioxide to carbon monoxide in Dielectric Barrier Discharges can be enhanced by the addition of nitrogen gas. Here, the development of microdischarges in CO2 and CO2/N2 gas mixtures is studied. Therefore, a single filament DBD arrangement operated under sinusoidal high-voltage is investigated by means of spectroscopic and electrical diagnostics with high spatial and temporal resolution and sensitivity. The filament development is similar as in air or other nitrogen-oxygen gas mixtures, but the gas composition influences the duration and other parameters. The higher the CO2 content the weaker the filaments and the faster the quenching of excited molecular states. The optimum power dissipation into single discharge is obtained for a CO2 content between 20 and 30 vol.%.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. van der Linden, C.E. Hanson, Climate Change 2007: Impacts, Adaptation and Vulnerability (Cambridge University Press, Cambridge, 2007)Google Scholar
  2. 2.
    A. Fridman, Plasma Chemistry (Cambridge University Press, Cambridge, 2008)Google Scholar
  3. 3.
    A. Lebouvier, S.A. Iwarere, P. d’Argenlieu, D. Ramjugernath, L. Fulcher, Energy & Fuels 27, 2712 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Bogaerts, T. Kozak, K. Van Laer, R. Snoeckx, Faraday Discuss. 183, 261 (2015)ADSCrossRefGoogle Scholar
  5. 5.
    A.P.H. Goede, W.A. Bongers, M.F. Graswinckel, R.M.C.M van de Sanden, M. Leins, J. Kopecki, A. Schulz, M. Walker, EPJ Web of Conferences 79, 01005 (2014)CrossRefGoogle Scholar
  6. 6.
    S. Ponduri, M.M. Becker, S. Welzel, M.C.M. van de Sanden, D. Loffhagen, R. Engeln, J. Appl. Phys. 119, 093301 (2016)ADSCrossRefGoogle Scholar
  7. 7.
    F. Brehmer, S. Welzel, B.L.M. Klarenaar, H.J. van der Meiden, M.C.M van de Sanden, R. Engeln, J. Phys. D: Appl. Phys. 48, 155201 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    I. Belov, S. Paulussen, A. Bogaerts, Plasma Sources Sci. Technol. 25, 015023 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    B. Eliasson, W. Egli, U. Kogelschatz, Pure Appl. Chem. 66, 1275 (1994)CrossRefGoogle Scholar
  10. 10.
    R. Snoeckx, S. Heijkers, K. van Wesenbeeck, S. Lenaerts, A. Bogaerts, Energy & Environ. Sci. 9, 999 (2016)CrossRefGoogle Scholar
  11. 11.
    M. Schiorlin, R. Klink, R. Brandenburg, Eur. Phys. J. Appl. Phys. 75, 24704 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    K.V. Kozlov, R. Brandenburg, H.-E. Wagner, A.M. Morozov, P. Michel, J. Phys. D: Appl. Phys. 38, 518 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. Kettlitz, H. Höft, T. Hoder, S. Reuter, K.-D. Weltmann, R. Brandenburg, J. Phys. D: Appl. Phys. 45, 245201 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    K.V. Kozlov, H.-E. Wagner, R. Brandenburg, P. Michel, J. Phys. D: Appl. Phys. 34, 3164 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    W. Becker, Advanced Time-Correlated Single Photon Counting Techniques (Springer-Verlag, Berlin, 2005)Google Scholar
  16. 16.
    T. Hoder, R. Brandenburg, R. Basner, K.-D. Weltmann, K.V. Kozlov, H.-E. Wagner, J. Phys. D: Appl. Phys. 43, 124009 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    F. Brehmer, Shining light on transient CO2 plasma, PhD Thesis Technical University of Eindhoven, 2015Google Scholar
  18. 18.
    B.R.K. Asundi, J.D. Craggs, M.V. Kurepa, Proc. Phys. Soc. 82, 967 (1963)ADSCrossRefGoogle Scholar
  19. 19.
    F. Brehmer, S. Welzel, M.C.M. van de Sanden, R. Engeln, J. Appl. Phys. 116, 123303 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    R.W.B. Pearse, A.G. Gaydon, The Identification of Molecular Spectra, 3rd ed. (Chapman and Hall, London, 1965)Google Scholar
  21. 21.
    J.C. McCallum, R.W. Nicholls, J. Phys. B: Atom. Molec. Phys. 5, 1417 (1972)ADSCrossRefGoogle Scholar
  22. 22.
    A.G. Middleton, M.J. Brunger, P.J.O. Teubner, J. Phys. B: Atom. Mol. Opl. Phys. 26, 1743 (1993)ADSCrossRefGoogle Scholar
  23. 23.
    P.H. Krupenie, The Band Spectrum of Carbon Monoxide (National Standard Ref. Data Series; National Bureau of Standards-5, 1966)Google Scholar
  24. 24.
    T. Silva, N. Britun, T. Godfroid R. Snyders, Plasma Sources Sci. Technol. 23, 025009 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    H. Anton, Ann. Phys. 473, 178 (1966)CrossRefGoogle Scholar
  26. 26.
    S. Agrup, M. Alden, Chem. Phys. Lett. 189, 211 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    A.J. Smith, R.E. Imhof, F.H. Read, J. Phys. B: Atom. Molec. Phys. 6, 1333 (1973)ADSCrossRefGoogle Scholar
  28. 28.
    A.-M. Pointu, A. Ricard, B. Dodet, E. Odic, J. Larbre, M. Ganciu, J. Phys. D: Appl. Phys. 38, 1905 (2005)ADSCrossRefGoogle Scholar
  29. 29.
    R. Brandenburg, V.A. Maiorov, Yu.B. Golubovskii, H.-E. Wagner, J. Behnke, J.F. Behnke, J. Phys. D: Appl. Phys. 38, 2187 (2005)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Leibniz Institute for Plasma Science and Technology (INP Greifswald)GreifswaldGermany

Personalised recommendations