The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 581–594 | Cite as

Cluster Monte Carlo and dynamical scaling for long-range interactions

  • Emilio Flores-Sola
  • Martin Weigel
  • Ralph Kenna
  • Bertrand Berche
Regular Article
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena

Abstract

Many spin systems affected by critical slowing down can be efficiently simulated using cluster algorithms. Where such systems have long-range interactions, suitable formulations can additionally bring down the computational effort for each update from O(N 2) to O(N ln N) or even O(N), thus promising an even more dramatic computational speed-up. Here, we review the available algorithms and propose a new and particularly efficient single-cluster variant. The efficiency and dynamical scaling of the available algorithms are investigated for the Ising model with power-law decaying interactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Kawashima, H. Rieger, in Frustrated Spin Systems, edited by H.T. Diep (World Scientific, Singapore, 2005), Chap. 9, p. 491Google Scholar
  2. 2.
    N.G. Fytas, V. Martín-Mayor, M. Picco, N. Sourlas, Phys. Rev. Lett. 116, 227201 (2016)ADSCrossRefGoogle Scholar
  3. 3.
    M. Wittmann, A.P. Young, Phys. Rev. E 90, 062137 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    E. Flores-Sola, B. Berche, R. Kenna, M. Weigel, Phys. Rev. Lett. 116, 115701 (2016)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    M.E. Fisher, Rev. Mod. Phys. 46, 597 (1974)ADSCrossRefGoogle Scholar
  6. 6.
    D.C. Rapaport, The Art of Molecular Dynamics Simulation (Cambridge University Press, Cambridge, 2004)Google Scholar
  7. 7.
    K. Binder, D.P. Landau, A Guide to Monte Carlo Simulations in Statistical Physics, 4th edn. (Cambridge University Press, Cambridge, 2015)Google Scholar
  8. 8.
    N. Metropolis et al., J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  9. 9.
    R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58, 86 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    U. Wolff, Phys. Rev. Lett. 62, 361 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    E. Luijten, Lect. Notes Phys. 703, 13 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Deng, T.M. Garoni, A.D. Sokal, Phys. Rev. Lett. 98, 230602 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    E.M. Elçi, M. Weigel, Phys. Rev. E 88, 033303 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    C. Lacroix, P. Mendels, F. Mila, Introduction to Frustrated Magnetism: Materials, Experiments, Theory (Springer, Berlin, 2011), Vol. 164 Google Scholar
  15. 15.
    J.W. Britton et al., Nature 484, 489 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M.E. Fisher, S.K. Ma, B.G. Nickel, Phys. Rev. Lett. 29, 917 (1972)ADSCrossRefGoogle Scholar
  17. 17.
    F.J. Dyson, Commun. Math. Phys. 12, 91 (1969)ADSCrossRefGoogle Scholar
  18. 18.
    F.J. Dyson, Commun. Math. Phys. 21, 269 (1971)ADSCrossRefGoogle Scholar
  19. 19.
    H.-J. Xu, B. Bergersen, Z. Rácz, Phys. Rev. E 47, 1520 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    J.F. Nagle, J.C. Bonner, J. Phys. C 3, 352 (1970)ADSCrossRefGoogle Scholar
  21. 21.
    Z. Glumac, K. Uzelac, J. Phys. A 22, 4439 (1989)ADSCrossRefGoogle Scholar
  22. 22.
    E. Luijten, H.W. Blöte, Int. J. Mod. Phys. C 6, 359 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    K. Fukui, S. Todo, J. Comp. Phys. 228, 2629 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    W. Janke, in Computational Physics, edited by K.H. Hoffmann, M. Schreiber (Springer, Berlin, 1996), pp. 10–43Google Scholar
  25. 25.
    C.M. Fortuin, P.W. Kasteleyn, Physica 57, 536 (1972)ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    R.G. Edwards, A.D. Sokal, Phys. Rev. D 38, 2009 (1988)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    M. Weigel, Phys. Rev. E 84, 036709 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    E. Luijten, H.W.J. Blöte, Phys. Rev. B 56, 8945 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    D.E. Knuth, The Art of Computer Programming, Volume 2: Seminumerical Algorithms, 3rd edn. (Addison-Wesley, Upper Saddle River, NJ, 1997)Google Scholar
  30. 30.
    J.E. Gentle, Random number generation and Monte Carlo methods, 2nd edn. (Springer, Berlin, 2003)Google Scholar
  31. 31.
    R.E. Tarjan, J. ACM 22, 215 (1975)CrossRefGoogle Scholar
  32. 32.
    M.E.J. Newman, R.M. Ziff, Phys. Rev. E 64, 016706 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    W. Janke, in Proceedings of the Euro Winter School “Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms”, Vol. 10 of NIC Series, edited by J. Grotendorst, D. Marx, A. Muramatsu (John von Neumann Institute for Computing, Jülich, 2002), pp. 423–445Google Scholar
  34. 34.
    N. Persky, R. Ben-Av, I. Kanter, E. Domany, Phys. Rev. E 54, 2351 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Deng et al., Phys. Rev. Lett. 99, 055701 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    U. Wolff, Phys. Lett. B 228, 379 (1989)ADSCrossRefGoogle Scholar
  37. 37.
    T.S. Ray, P. Tamayo, W. Klein, Phys. Rev. A 39, 5949 (1989)ADSCrossRefGoogle Scholar
  38. 38.
    S.A. Cannas, D.A. Stariolo, F.A. Tamarit, Physica A 294, 362 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    B. Berche, R. Kenna, J.C. Walter, Nucl. Phys. B 865, 115 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    E.J. Flores-Sola, B. Berche, R. Kenna, M. Weigel, Eur. Phys. J. B 88, 1 (2015)CrossRefGoogle Scholar
  41. 41.
    E. Luijten, Ph.D. thesis, Delft University of Technology, 1997Google Scholar
  42. 42.
    M. Sweeny, Phys. Rev. B 27, 4445 (1983)ADSCrossRefGoogle Scholar
  43. 43.
    E.M. Elçi, Ph.D. thesis, Coventry University, 2015Google Scholar
  44. 44.
    M.C. Angelini, G. Parisi, F. Ricci-Tersenghi, Phys. Rev. E 89, 062120 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    E. Flores-Sola, Ph.D. thesis, Coventry University, Coventry, 2016Google Scholar
  46. 46.
    F. Beyer, M. Weigel, M.A. Moore, Phys. Rev. B 86, 014431 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Applied Mathematics Research Centre, Coventry UniversityCoventry CV1 5FBUnited Kingdom
  2. 2.Institut Jean Lamour, CNRS/UMR 7198, Groupe de Physique Statistique, Université de LorraineVandœuvre-les-Nancy CedexFrance
  3. 3.Doctoral College for the Statistical Physics of Complex Systems, Leipzig-Lorraine-Lviv-Coventry (L4)LeipzigGermany

Personalised recommendations