The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 789–804

Scaling and universality in the phase diagram of the 2D Blume-Capel model

  • Johannes Zierenberg
  • Nikolaos G. Fytas
  • Martin Weigel
  • Wolfhard Janke
  • Anastasios Malakis
Review
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena

Abstract

We review the pertinent features of the phase diagram of the zero-field Blume-Capel model, focusing on the aspects of transition order, finite-size scaling and universality. In particular, we employ a range of Monte Carlo simulation methods to study the 2D spin-1 Blume-Capel model on the square lattice to investigate the behavior in the vicinity of the first-order and second-order regimes of the ferromagnet-paramagnet phase boundary, respectively. To achieve high-precision results, we utilize a combination of (i) a parallel version of the multicanonical algorithm and (ii) a hybrid updating scheme combining Metropolis and generalized Wolff cluster moves. These techniques are combined to study for the first time the correlation length of the model, using its scaling in the regime of second-order transitions to illustrate universality through the observed identity of the limiting value of ξ/L with the exactly known result for the Ising universality class.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Blume, Phys. Rev. 141, 517 (1966)ADSCrossRefGoogle Scholar
  2. 2.
    H.W. Capel, Physica (Utr.) 32, 966 (1966)ADSCrossRefGoogle Scholar
  3. 3.
    H.W. Capel, Physica (Utr.) 33, 295 (1967)ADSCrossRefGoogle Scholar
  4. 4.
    H.W. Capel, Physica (Utr.) 37, 423 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    I.D. Lawrie, S. Sarbach, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz., Vol. 9 (Academic Press, London, 1984)Google Scholar
  6. 6.
    W. Selke, J. Oitmaa, J. Phys. C 22, 076004 (2010)Google Scholar
  7. 7.
    N.G. Fytas, Eur. Phys. J. B 79, 21 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    J. Zierenberg, N.G. Fytas, W. Janke, Phys. Rev. E 91, 032126 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    A.N. Berker, M. Wortis, Phys. Rev. B 14, 4946 (1976)ADSCrossRefGoogle Scholar
  10. 10.
    D.P. Landau, Phys. Rev. Lett. 28, 449 (1972)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kaufman, R.B. Griffiths, J.M. Yeomans, M. Fisher, Phys. Rev. B 23, 3448 (1981)ADSMathSciNetCrossRefGoogle Scholar
  12. 12.
    W. Selke, J. Yeomans, J. Phys. A 16, 2789 (1983)ADSCrossRefGoogle Scholar
  13. 13.
    W. Selke, D.A. Huse, D.M. Kroll, J. Phys. A 17, 3019 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    D.P. Landau, R.H. Swendsen, Phys. Rev. B 33, 7700 (1986)ADSCrossRefGoogle Scholar
  15. 15.
    J.C. Xavier, F.C. Alcaraz, D. Pena Lara, J.A. Plascak, Phys. Rev. B 57, 11575 (1998)ADSCrossRefGoogle Scholar
  16. 16.
    Y. Deng, W. Guo, H.W.J. Blöte, Phys. Rev. E 72, 016101 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    C.J. Silva, A.A. Caparica, J.A. Plascak, Phys. Rev. E 73, 036702 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    D. Hurt, M. Eitzel, R.T. Scalettar, G.G. Batrouni, in Computer Simulation Studies in Condensed Matter Physics XVII, Springer Proceedings in Physics, edited by D.P. Landau, S.P. Lewis, H.-B. Schüttler, Vol. 105 (Springer, Berlin, 2007)Google Scholar
  19. 19.
    A. Malakis, A.N. Berker, I.A. Hadjiagapiou, N.G. Fytas, Phys. Rev. E 79, 011125 (2009)ADSMathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Malakis, A.N. Berker, I.A. Hadjiagapiou, N.G. Fytas, T. Papakonstantinou, Phys. Rev. E 81, 041113 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    W. Kwak, J. Jeong, J. Lee, D.-H. Kim, Phys. Rev. E 92, 022134 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    M.J. Stephen, J.L. McColey, Phys. Rev. Lett. 44, 89 (1973)CrossRefGoogle Scholar
  23. 23.
    T.S. Chang, G.F. Tuthill, H.E. Stanley, Phys. Rev. B 9, 4482 (1974)ADSGoogle Scholar
  24. 24.
    G.F. Tuthill, J.F. Nicoll, H.E. Stanley, Phys. Rev. B 11, 4579 (1975)ADSCrossRefGoogle Scholar
  25. 25.
    F.J. Wegner, Phys. Lett. 54A, 1 (1975)ADSCrossRefGoogle Scholar
  26. 26.
    P.F. Fox, A.J. Guttmann, J. Phys. C 6, 913 (1973)ADSCrossRefGoogle Scholar
  27. 27.
    W.J. Camp, J.P. Van Dyke, Phys. Rev. B 11, 2579 (1975)ADSCrossRefGoogle Scholar
  28. 28.
    T.W. Burkhardt, R.H. Swendsen, Phys. Rev. B 13, 3071 (1976)ADSCrossRefGoogle Scholar
  29. 29.
    P.D. Beale, Phys. Rev. B 33, 1717 (1986)ADSCrossRefGoogle Scholar
  30. 30.
    T.W. Burkhardt, Phys. Rev. B 14, 1196 (1976)ADSCrossRefGoogle Scholar
  31. 31.
    T.W. Burkhardt, H.J.F. Knops, Phys. Rev. B. 15, 1602 (1977)ADSCrossRefGoogle Scholar
  32. 32.
    M. Kaufman, R.B. Griffiths, J.M. Yeomans, M.E. Fisher, Phys. Rev. B 23, 3448 (1981)ADSMathSciNetCrossRefGoogle Scholar
  33. 33.
    J.M. Yeomans, M.E. Fisher, Phys. Rev. B 24, 2825 (1981)ADSCrossRefGoogle Scholar
  34. 34.
    N.B. Wilding, P. Nielaba, Phys. Rev. E 53, 926 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    J.A. Plascak, P.H.L. Martins, Comput. Phys. Commun. 184, 259 (2013)ADSMathSciNetCrossRefGoogle Scholar
  36. 36.
    K. Binder, D.P. Landau, Phys. Rev. B 30, 1477 (1984)ADSCrossRefGoogle Scholar
  37. 37.
    M.S.S. Challa, D.P. Landau, K. Binder, Phys. Rev. B 34, 1841 (1986)ADSCrossRefGoogle Scholar
  38. 38.
    W. Janke, First-order phase transitions, in Computer Simulations of Surfaces and Interfaces, NATO Science Series, II. Mathematics, Physics and Chemistry – Vol. 114, Proceedings of the NATO Advanced Study Institute, Albena, Bulgaria, 9–20 September 2002, B. Dünweg, D.P. Landau, [ A.I.Milchev, eds. (Kluwer, Dordrecht, 2003), pp. 111–135Google Scholar
  39. 39.
    W. Janke, R. Villanova, Nucl. Phys. B 489, 679 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    D.P. Landau, K. Binder, Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000)Google Scholar
  41. 41.
    J. Cardy, Scaling and Renormalization in Statistical Physics (Cambridge University Press, Cambridge, 1996)Google Scholar
  42. 42.
    A. Pelissetto, E. Vicari, Phys. Rep. 368, 549 (2002)ADSMathSciNetCrossRefGoogle Scholar
  43. 43.
    J. Salas, A.D. Sokal, J. Stat. Phys. 98, 551 (2000)CrossRefGoogle Scholar
  44. 44.
    W. Selke, L.N. Shchur, J. Phys. A 38, L739 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    B.A. Berg, T. Neuhaus, Phys. Lett. B 267, 249 (1991)ADSCrossRefGoogle Scholar
  46. 46.
    B.A. Berg, T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992)ADSCrossRefGoogle Scholar
  47. 47.
    W. Janke, Int. J. Mod. Phys. C 03, 1137 (1992)ADSCrossRefGoogle Scholar
  48. 48.
    W. Janke, Physica A 254, 164 (1998)ADSCrossRefGoogle Scholar
  49. 49.
    J. Zierenberg, M. Marenz, W. Janke, Comput. Phys. Comm. 184, 1155 (2013)ADSCrossRefGoogle Scholar
  50. 50.
    J. Zierenberg, M. Marenz, W. Janke, Physics Procedia 53, 55 (2014)ADSCrossRefGoogle Scholar
  51. 51.
    C.M. Fortuin, P.W. Kasteleyn, Physica 57, 536 (1972)ADSMathSciNetCrossRefGoogle Scholar
  52. 52.
    R.H. Swendsen, J.S. Wang, Phys. Rev. Lett. 58, 86 (1987)ADSCrossRefGoogle Scholar
  53. 53.
    H.W.J. Blöte, E. Luijten, J.R. Heringa, J. Phys. A: Math. Gen. 28, 6289 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    M. Hasenbusch, Phys. Rev. B 82, 174433 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    A. Malakis, A.N. Berker, N.G. Fytas, T. Papakonstantinou, Phys. Rev. E 85, 061106 (2012)ADSCrossRefGoogle Scholar
  56. 56.
    U. Wolff, Phys. Rev. Lett. 62, 361 (1989)ADSCrossRefGoogle Scholar
  57. 57.
    B. Efron, The Jackknife, the Bootstrap and other Resampling Plans (Society for Industrial and Applied Mathematics, Philadelphia, 1982)Google Scholar
  58. 58.
    B. Efron, R.J. Tibshirani, An Introduction to the Bootstrap (Chapman and Hall, Boca Raton, 1994)Google Scholar
  59. 59.
    F. Cooper, B. Freedman, D. Preston, Nucl. Phys. B 210, 210 (1982)ADSCrossRefGoogle Scholar
  60. 60.
    H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz Sudupe, G. Parisi, J.J. Ruiz-Lorenzo, J. Phys. A: Math. Gen. 32, 1 (1999)ADSCrossRefGoogle Scholar
  61. 61.
    P. Young, Everything You Wanted to Know About Data Analysis and Fitting but Were Afraid to Ask, SpringerBriefs in Physics (Springer, Berlin, 2015)Google Scholar
  62. 62.
    D. Amit, V. Martín-Mayor, Field Theory, the Renormalization Group and Critical Phenomena, 3rd edn. (World Scientific, Singapore, 2005)Google Scholar
  63. 63.
    M.P. Nightingale, Physica (Amsterdam) 83A, 561 (1976)ADSCrossRefGoogle Scholar
  64. 64.
    H.G. Ballesteros, L.A. Fernández, V. Martín-Mayor, A. Muñoz-Sudupe, Phys. Lett. B 378, 207 (1996)ADSCrossRefGoogle Scholar
  65. 65.
    N.G. Fytas, V. Martín-Mayor, Phys. Rev. Lett. 110, 227201 (2013)ADSCrossRefGoogle Scholar
  66. 66.
    P.E. Theodorakis, N.G. Fytas, Phys. Rev. E 86, 011140 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Institut für Theoretische Physik, Universität LeipzigLeipzigGermany
  2. 2.Doctoral College for the Statistical Physics of Complex Systems, Leipzig-Lorraine-Lviv-Coventry (L4)LeipzigGermany
  3. 3.Applied Mathematics Research Centre, Coventry UniversityCoventryUnited Kingdom
  4. 4.Department of PhysicsSection of Solid State Physics, University of Athens, PanepistimiopolisZografouGreece

Personalised recommendations