The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 805–816

Infinite disorder and correlation fixed point in the Ising model with correlated disorder

Regular Article
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena

Abstract

Recent Monte Carlo simulations of the q-state Potts model with a disorder displaying slowly-decaying correlations reported a violation of hyperscaling relation caused by large disorder fluctuations and the existence of a Griffiths phase, as in random systems governed by an infinite-disorder fixed point. New simulations of the Ising model (q = 2), directly made in the limit of an infinite disorder strength, are presented. The magnetic scaling dimension is shown to correspond to the correlated percolation fixed point. The latter is shown to be unstable at finite disorder strength but with a large cross-over length which is not accessible to Monte Carlo simulations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Groupe de Physique Statistique, Département P2M, Institut Jean Lamour (CNRS UMR 7198), Université de LorraineLorraineFrance

Personalised recommendations