The European Physical Journal Special Topics

, Volume 226, Issue 13, pp 2901–2910

A novel approach to the pacemaker infection with non-thermal atmospheric pressure plasma

  • Yuchen Zhang
  • Yu Li
  • Yinglong Li
  • Shuang Yu
  • Haiyan Li
  • Jue Zhang
Regular Article
Part of the following topical collections:
  1. Technological Applications of Microplasmas


Although the pacemaker (PM) is a key cardiac implantable electrical device for life-threatening arrhythmias treatment, the related infection is a challenge. Thus, the aim of this study is to validate cold plasma as a potential technology for the disinfection of infected pacemakers. Fifty donated PMs were cleaned and sterilized before use and then infected with Staphylococcus aureus (S. aureus). Then, each experimental group was treated with cold plasma treatment for 1 min, 3 min, 5 min and 7 min, while the control group was immersed with sterilized water. Effectiveness of disinfection was evaluated by using CFU counting method and confocal laser scanning microscopy (CLSM). The physicochemical properties of water treated with cold plasma at different time were evaluated, including water temperature change and oxidation reduction potential (ORP). The major reactive species generated by the cold plasma equipment during cold plasma were analyzed with optical emission spectroscopy (OES). No live bacteria were detected with CFU counting method after 7 min of cold plasma treatment, which matches with the CLSM results. The ORP value of water and H2O2 concentration changed significantly after treating with cold plasma. Furthermore, reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially NO, O (777 nm) and O (844 nm) were probably key inactivation agents in cold plasma treatment. These results indicate that cold plasma could be an effective technology for the disinfection of implantable devices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.C. Lekkerkerker, C. van Nieuwkoop, S.A. Trines, J.G. van der Bom, A. Bernards, E.T.V.D. Velde, M. Bootsma, K. Zeppenfeld, J.W. Jukema, J.W. Borleffs, M.J. Schalij, L.V. Erven, Heart 95, 715 (2009)CrossRefGoogle Scholar
  2. 2.
    D. Klug, M. Balde, D. Pavin, D. Pavin, F.H. Lucet, J. Clementy, N. Sadoul, J.L. Rey, G. Lande, A. Lazarus, J. Victor, C. Barnay, B. Grandbastien, S. Kacet, Circulation 116, 1349 (2007)CrossRefGoogle Scholar
  3. 3.
    H. Giamarellou, J. Hosp. Infect. 50, 91 (2002)CrossRefGoogle Scholar
  4. 4.
    A.L. Chamis, G.E. Peterson, C.H. Cabell, G.R. Corey, R.A. Sorrentino, R.A. Greenfield, T. Ryan, L.B. Reller, V.G. Fowler Jr., Circulation 104, 1029 (2001)CrossRefGoogle Scholar
  5. 5.
    H.G. Mond, W. Mick, B.S. Maniscalco, HeartRhythm 6, 1538 (2009)Google Scholar
  6. 6.
    D. Maher, N. Ford, Bull. World Health Organ. 89, 547 (2011)CrossRefGoogle Scholar
  7. 7.
    F. Tessarolo, G. Nollo, I. Caola in Biomedical Engineering, Trends, Research and Technologies (INTECH Open Access Publisher, 2011)Google Scholar
  8. 8.
    S.K. Suvarna, R.D. Start, D.I. Tayler, J. Clin. Pathol. 52, 677 (1999)CrossRefGoogle Scholar
  9. 9.
    B.B. Pavri, Y. Lokhandwala, G.V. Kulkarni, M. Shah, B.K. Kantharia, D.A. Mascarenhas, Ann. Intern. Med. 157, 542 (2012)CrossRefGoogle Scholar
  10. 10.
    T.S. Baman, P. Meier, J. Romero, L. Gakenheimer, J.N. Kirkpatrick, P. Sovitch, H. Oral, K.A. Eagle, Circ-Arrhythmia Elec. 4, 318 (2011)CrossRefGoogle Scholar
  11. 11.
    M.S. Favero, Manual of Clinical Microbiology (American Society for Microbiology, Washington, D.C., 1991), p. 183Google Scholar
  12. 12.
    Q. Zhang, Y. Liang, H. Feng, R. Ma, Y. Tian, J. Zhang, J. Fang, Appl. Phys. Lett. 102, 203701 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    P. Li, Z. Chen, G. Xia, L. Hong, G. Xu, X. Zheng, Y. Hu, Q. Wang, Q. Ye, M. Liu, Plasma Science, IEEE Trans. 41, 513 (2013)CrossRefGoogle Scholar
  14. 14.
    Y. Liang, Y. Li, K. Sun, Q. Zhang, W. Li, W. Zhu, J. Zhang, J. Fang, Plasma Process. Polym. 12, 1069 (2015)CrossRefGoogle Scholar
  15. 15.
    Y. Li, K. Sun, G. Ye, Y. Liang, H. Pan, G. Wang, Y. Zhao, J. Pan, J. Zhang, J. Fang, J. Endodont. 41, 1325 (2015)CrossRefGoogle Scholar
  16. 16.
    G. Isbary, G. Morfill, H. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J.L. Zimmermann, R. Pompl, W. Stolz, Br J. Dermatol. 163, 78 (2010)Google Scholar
  17. 17.
    O. Volotskova, A. Shashurin, M.A. Stepp, S. Pal-Ghosh, M. Keidar, Plasma Med. 1, 85 (2011)CrossRefGoogle Scholar
  18. 18.
    H. Lee, C. Shon, Y. Kim, S Kim, G.C. Kim, M.G. Kong, New J. Phys. 11, 115026 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    G. Daeschlein, S. Scholz, R. Ahmed, G. Daeschlein, S. Scholz, R. Ahmed, J. Hosp Infect. 81, 177 (2012)CrossRefGoogle Scholar
  20. 20.
    N. O’Connor, O. Cahill, S. Daniels, S. Galvinc, H. Humphreys, J. Hosp Infect. 88, 59 (2014)CrossRefGoogle Scholar
  21. 21.
    Y. Liang, Y. Wu, K. Sun, Q. Chen, F. Shen, J. Zhang, J. Fang, Environ. Sci. Technol. 46, 3360 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Tian, R. Ma, Q. Zhang, H. Feng, Y. Liang, J. Zhang, J. Fang, Plasma Process. Polym. 12, 439 (2015)CrossRefGoogle Scholar
  23. 23.
    Q. Zhang, Y. Liang, H. Feng, R. Ma, Y. Tian, J. Zhang, J. Fang, Appl. Phys. Lett. 102, 203701 (2013)ADSCrossRefGoogle Scholar
  24. 24.
    J.C. Nielsen, J.C. Gerdes, N. Varma. Eur. Heart J. 36, 2484 (2015)CrossRefGoogle Scholar
  25. 25.
    S. Yu, Q. Chen, J. Liu, K. Wang, Z. Jiang, Z. Sun, J. Fang, Appl. Phys. Lett. 106, 244101 (2015)ADSCrossRefGoogle Scholar
  26. 26.
    R. Ma, H. Feng, Y. Liang, Q. Zhang, Y. Tian, B. Su, J. Zhang, J. Fang, J. Phys. D: Appl. Phys. 46, 285401 (2013)CrossRefGoogle Scholar
  27. 27.
    D. Mack, H. Rohde, S. Dobinsky, J. Riedewald, M. Nedelmann, J.K.M. Knobloch, H.A. Elsner, H.H. Feucht, Infect Immun. 68, 3799 (2000)CrossRefGoogle Scholar
  28. 28.
    M.J. Pavlovich, H. Chang, Y. Sakiyama, D.S. Clark, D.B. Graves, J. Phys. D: Appl. Phys. 46, 145202 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    N. Shainsky, D. Dobrynin, U. Ercan, S. G. Joshi, H. Ji, A. Brooks, G. Fridman, Y. Cho, A. Fridman, G. Friedman, Plasma Process. Polym. 9, 6 (2012)CrossRefGoogle Scholar
  30. 30.
    M. Naitali, G. Kamgang-Youbi, J.M. Herry, M.N. Bellon-Fontaine, J.L. Brisset, Appl. Environ. Microbiol. 76, 7662 (2010)CrossRefGoogle Scholar
  31. 31.
    R Burlica, R.G. Grim, K.Y. Shih, D. Balkwill, B.R. Locke, Plasma Process. Polym. 7, 640 (2010)CrossRefGoogle Scholar
  32. 32.
    M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 233, 81 (2004)CrossRefGoogle Scholar
  33. 33.
    A. Helmke, D. Hoffmeister, F. Berge, S. Emmert, P. Laspe, N. Mertens, W. Vioel, K.D. Weltmann, Plasma Process. Polym. 8, 278 (2011)CrossRefGoogle Scholar
  34. 34.
    J. Shen, Y. Tian, Y.L. Li, R.N. Ma, Q. Zhang, J. Zhang, J. Fang, Sci. Rep. 6, 28505 (2016)ADSCrossRefGoogle Scholar
  35. 35.
    K. Oehmigen, M. Hähnel, R. Brandenburg, Ch. Wilke, K.-D. Weltmann, Th. von Woedtke, Plasma Process. Polym. 7, 250 (2010)CrossRefGoogle Scholar
  36. 36.
    M. Laroussi, Plasma Process. Polym. 2, 391 (2005)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yuchen Zhang
    • 1
  • Yu Li
    • 1
  • Yinglong Li
    • 2
  • Shuang Yu
    • 2
  • Haiyan Li
    • 1
  • Jue Zhang
    • 2
    • 3
  1. 1.Department of CardiologyBeijing Anzhen Hospital, Capital Medical UniversityBeijingP.R. China
  2. 2.Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingP.R. China
  3. 3.College of Engineering, Peking UniversityBeijingP.R. China

Personalised recommendations