Skip to main content

Advertisement

Log in

A novel approach to the pacemaker infection with non-thermal atmospheric pressure plasma

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Although the pacemaker (PM) is a key cardiac implantable electrical device for life-threatening arrhythmias treatment, the related infection is a challenge. Thus, the aim of this study is to validate cold plasma as a potential technology for the disinfection of infected pacemakers. Fifty donated PMs were cleaned and sterilized before use and then infected with Staphylococcus aureus (S. aureus). Then, each experimental group was treated with cold plasma treatment for 1 min, 3 min, 5 min and 7 min, while the control group was immersed with sterilized water. Effectiveness of disinfection was evaluated by using CFU counting method and confocal laser scanning microscopy (CLSM). The physicochemical properties of water treated with cold plasma at different time were evaluated, including water temperature change and oxidation reduction potential (ORP). The major reactive species generated by the cold plasma equipment during cold plasma were analyzed with optical emission spectroscopy (OES). No live bacteria were detected with CFU counting method after 7 min of cold plasma treatment, which matches with the CLSM results. The ORP value of water and H2O2 concentration changed significantly after treating with cold plasma. Furthermore, reactive oxygen species (ROS) and reactive nitrogen species (RNS), especially NO, O (777 nm) and O (844 nm) were probably key inactivation agents in cold plasma treatment. These results indicate that cold plasma could be an effective technology for the disinfection of implantable devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.C. Lekkerkerker, C. van Nieuwkoop, S.A. Trines, J.G. van der Bom, A. Bernards, E.T.V.D. Velde, M. Bootsma, K. Zeppenfeld, J.W. Jukema, J.W. Borleffs, M.J. Schalij, L.V. Erven, Heart 95, 715 (2009)

    Article  Google Scholar 

  2. D. Klug, M. Balde, D. Pavin, D. Pavin, F.H. Lucet, J. Clementy, N. Sadoul, J.L. Rey, G. Lande, A. Lazarus, J. Victor, C. Barnay, B. Grandbastien, S. Kacet, Circulation 116, 1349 (2007)

    Article  Google Scholar 

  3. H. Giamarellou, J. Hosp. Infect. 50, 91 (2002)

    Article  Google Scholar 

  4. A.L. Chamis, G.E. Peterson, C.H. Cabell, G.R. Corey, R.A. Sorrentino, R.A. Greenfield, T. Ryan, L.B. Reller, V.G. Fowler Jr., Circulation 104, 1029 (2001)

    Article  Google Scholar 

  5. H.G. Mond, W. Mick, B.S. Maniscalco, HeartRhythm 6, 1538 (2009)

    Google Scholar 

  6. D. Maher, N. Ford, Bull. World Health Organ. 89, 547 (2011)

    Article  Google Scholar 

  7. F. Tessarolo, G. Nollo, I. Caola in Biomedical Engineering, Trends, Research and Technologies (INTECH Open Access Publisher, 2011)

  8. S.K. Suvarna, R.D. Start, D.I. Tayler, J. Clin. Pathol. 52, 677 (1999)

    Article  Google Scholar 

  9. B.B. Pavri, Y. Lokhandwala, G.V. Kulkarni, M. Shah, B.K. Kantharia, D.A. Mascarenhas, Ann. Intern. Med. 157, 542 (2012)

    Article  Google Scholar 

  10. T.S. Baman, P. Meier, J. Romero, L. Gakenheimer, J.N. Kirkpatrick, P. Sovitch, H. Oral, K.A. Eagle, Circ-Arrhythmia Elec. 4, 318 (2011)

    Article  Google Scholar 

  11. M.S. Favero, Manual of Clinical Microbiology (American Society for Microbiology, Washington, D.C., 1991), p. 183

  12. Q. Zhang, Y. Liang, H. Feng, R. Ma, Y. Tian, J. Zhang, J. Fang, Appl. Phys. Lett. 102, 203701 (2013)

    Article  ADS  Google Scholar 

  13. P. Li, Z. Chen, G. Xia, L. Hong, G. Xu, X. Zheng, Y. Hu, Q. Wang, Q. Ye, M. Liu, Plasma Science, IEEE Trans. 41, 513 (2013)

    Article  Google Scholar 

  14. Y. Liang, Y. Li, K. Sun, Q. Zhang, W. Li, W. Zhu, J. Zhang, J. Fang, Plasma Process. Polym. 12, 1069 (2015)

    Article  Google Scholar 

  15. Y. Li, K. Sun, G. Ye, Y. Liang, H. Pan, G. Wang, Y. Zhao, J. Pan, J. Zhang, J. Fang, J. Endodont. 41, 1325 (2015)

    Article  Google Scholar 

  16. G. Isbary, G. Morfill, H. Schmidt, M. Georgi, K. Ramrath, J. Heinlin, S. Karrer, M. Landthaler, T. Shimizu, B. Steffes, W. Bunk, R. Monetti, J.L. Zimmermann, R. Pompl, W. Stolz, Br J. Dermatol. 163, 78 (2010)

    Google Scholar 

  17. O. Volotskova, A. Shashurin, M.A. Stepp, S. Pal-Ghosh, M. Keidar, Plasma Med. 1, 85 (2011)

    Article  Google Scholar 

  18. H. Lee, C. Shon, Y. Kim, S Kim, G.C. Kim, M.G. Kong, New J. Phys. 11, 115026 (2009)

    Article  ADS  Google Scholar 

  19. G. Daeschlein, S. Scholz, R. Ahmed, G. Daeschlein, S. Scholz, R. Ahmed, J. Hosp Infect. 81, 177 (2012)

    Article  Google Scholar 

  20. N. O’Connor, O. Cahill, S. Daniels, S. Galvinc, H. Humphreys, J. Hosp Infect. 88, 59 (2014)

    Article  Google Scholar 

  21. Y. Liang, Y. Wu, K. Sun, Q. Chen, F. Shen, J. Zhang, J. Fang, Environ. Sci. Technol. 46, 3360 (2012)

    Article  ADS  Google Scholar 

  22. Y. Tian, R. Ma, Q. Zhang, H. Feng, Y. Liang, J. Zhang, J. Fang, Plasma Process. Polym. 12, 439 (2015)

    Article  Google Scholar 

  23. Q. Zhang, Y. Liang, H. Feng, R. Ma, Y. Tian, J. Zhang, J. Fang, Appl. Phys. Lett. 102, 203701 (2013)

    Article  ADS  Google Scholar 

  24. J.C. Nielsen, J.C. Gerdes, N. Varma. Eur. Heart J. 36, 2484 (2015)

    Article  Google Scholar 

  25. S. Yu, Q. Chen, J. Liu, K. Wang, Z. Jiang, Z. Sun, J. Fang, Appl. Phys. Lett. 106, 244101 (2015)

    Article  ADS  Google Scholar 

  26. R. Ma, H. Feng, Y. Liang, Q. Zhang, Y. Tian, B. Su, J. Zhang, J. Fang, J. Phys. D: Appl. Phys. 46, 285401 (2013)

    Article  Google Scholar 

  27. D. Mack, H. Rohde, S. Dobinsky, J. Riedewald, M. Nedelmann, J.K.M. Knobloch, H.A. Elsner, H.H. Feucht, Infect Immun. 68, 3799 (2000)

    Article  Google Scholar 

  28. M.J. Pavlovich, H. Chang, Y. Sakiyama, D.S. Clark, D.B. Graves, J. Phys. D: Appl. Phys. 46, 145202 (2013)

    Article  ADS  Google Scholar 

  29. N. Shainsky, D. Dobrynin, U. Ercan, S. G. Joshi, H. Ji, A. Brooks, G. Fridman, Y. Cho, A. Fridman, G. Friedman, Plasma Process. Polym. 9, 6 (2012)

    Article  Google Scholar 

  30. M. Naitali, G. Kamgang-Youbi, J.M. Herry, M.N. Bellon-Fontaine, J.L. Brisset, Appl. Environ. Microbiol. 76, 7662 (2010)

    Article  Google Scholar 

  31. R Burlica, R.G. Grim, K.Y. Shih, D. Balkwill, B.R. Locke, Plasma Process. Polym. 7, 640 (2010)

    Article  Google Scholar 

  32. M. Laroussi, F. Leipold, Int. J. Mass Spectrom. 233, 81 (2004)

    Article  Google Scholar 

  33. A. Helmke, D. Hoffmeister, F. Berge, S. Emmert, P. Laspe, N. Mertens, W. Vioel, K.D. Weltmann, Plasma Process. Polym. 8, 278 (2011)

    Article  Google Scholar 

  34. J. Shen, Y. Tian, Y.L. Li, R.N. Ma, Q. Zhang, J. Zhang, J. Fang, Sci. Rep. 6, 28505 (2016)

    Article  ADS  Google Scholar 

  35. K. Oehmigen, M. Hähnel, R. Brandenburg, Ch. Wilke, K.-D. Weltmann, Th. von Woedtke, Plasma Process. Polym. 7, 250 (2010)

    Article  Google Scholar 

  36. M. Laroussi, Plasma Process. Polym. 2, 391 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jue Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, Y., Li, Y. et al. A novel approach to the pacemaker infection with non-thermal atmospheric pressure plasma. Eur. Phys. J. Spec. Top. 226, 2901–2910 (2017). https://doi.org/10.1140/epjst/e2016-60331-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60331-4

Navigation