The European Physical Journal Special Topics

, Volume 226, Issue 4, pp 725–736 | Cite as

Simulation of weak polyelectrolytes: a comparison between the constant pH and the reaction ensemble method

Regular Article
Part of the following topical collections:
  1. Recent Advances in Phase Transitions and Critical Phenomena

Abstract

The reaction ensemble and the constant pH method are well-known chemical equilibrium approaches to simulate protonation and deprotonation reactions in classical molecular dynamics and Monte Carlo simulations. In this article, we demonstrate the similarity between both methods under certain conditions. We perform molecular dynamics simulations of a weak polyelectrolyte in order to compare the titration curves obtained by both approaches. Our findings reveal a good agreement between the methods when the reaction ensemble is used to sweep the reaction constant. Pronounced differences between the reaction ensemble and the constant pH method can be observed for stronger acids and bases in terms of adaptive pH values. These deviations are due to the presence of explicit protons in the reaction ensemble method which induce a screening of electrostatic interactions between the charged titrable groups of the polyelectrolyte. The outcomes of our simulation hint to a better applicability of the reaction ensemble method for systems in confined geometries and titrable groups in polyelectrolytes with different pK a values.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Richtering, Progr. Colloid Polym. Sci. 133, 9 (2006)CrossRefGoogle Scholar
  2. 2.
    J.M. Berg, ed., Biochemistry (Freeman, New York, NY, USA, 2015)Google Scholar
  3. 3.
    M. Castelnovo, P. Sens, J.-F. Joanny, Eur. Phys. J. E 1, 115 (2000)CrossRefGoogle Scholar
  4. 4.
    C. Shi, J.A. Wallace, J.K. Shen, Biophys. J. 102, 1590 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    M. Lund, B. Jönsson, Biochemistry 44, 5722 (2005)CrossRefGoogle Scholar
  6. 6.
    M. Lund, B. Jönsson, Q. Rev. Biophys. 46, 265 (2013)CrossRefGoogle Scholar
  7. 7.
    S.E. Harnung, M.S. Johnson, Chemistry and the Environment (Cambridge University Press, Cambridge, UK, 2012)Google Scholar
  8. 8.
    J.N. Butler, Ionic Equilibrium: Solubility and pH Calculations (John Wiley & Sons, New York, NY, USA, 1998)Google Scholar
  9. 9.
    P.W. Atkins, J. de Paula, Physical Chemistry (Oxford University Press, Oxford, UK, 2010)Google Scholar
  10. 10.
    M. Müller, ed. Polyelectrolyte Complexes in the Dispersed and Solid State II: Application Aspects, volume 256 of Adv. Polym. Sci. (Springer, Berlin, Germany, 2013)Google Scholar
  11. 11.
    C.E. Reed, W.F. Reed, J. Chem. Phys. 96, 1609 (1992)ADSCrossRefGoogle Scholar
  12. 12.
    M. Ullner, B. Jönsson, B. Söderberg, C. Peterson, J. Chem. Phys. 104, 3048 (1996)ADSCrossRefGoogle Scholar
  13. 13.
    M. Ullner, B. Jönsson, Macromolecules 29, 6645 (1996)ADSCrossRefGoogle Scholar
  14. 14.
    M. Ullner, C.E. Woodward, Macromolecules 33, 7144 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    B. Jönsson, M. Ullner, C. Peterson, O. Sommelius, B. Söderberg, J. Phys. Chem. 100, 409 (1996)CrossRefGoogle Scholar
  16. 16.
    S. Uyaver, C. Seidel, Macromolecules 42, 1352 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    F. Carnal, S. Stoll, J. Chem. Phys. 134, 044909 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    A.K.N. Nair, S. Uyaver, S. Sun, J. Chem. Phys. 141, 134905 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    J. Mongan, D.A. Case, J.A. McCammon, J. Comput. Chem. 25, 2038 (2004)CrossRefGoogle Scholar
  20. 20.
    C. Heath Turner, J.K. Brennan, M. Lisal, W.R. Smith, J.K. Johnson, K.E. Gubbins, Mol. Simul. 34, 119 (2008)CrossRefGoogle Scholar
  21. 21.
    W. Smith, B. Triska, J. Chem. Phys. 100, 3019 (1994)ADSCrossRefGoogle Scholar
  22. 22.
    J.K. Johnson, A.Z. Panagiotopoulos, K.E. Gubbins, Mol. Phys. 81, 717 (1994)ADSCrossRefGoogle Scholar
  23. 23.
    A. Panagiotopoulos, J. Phys. Cond. Matt. 21, 424113 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    F. Uhlik, P. Kosovan, Z. Limpouchova, K. Prochazka, O.V. Borisov, F.A. Leermakers, Macromolecules 47, 4004 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    F. Uhlík, P. Košovan, E.B. Zhulina, O.V. Borisov, Soft Matter 12, 4846 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    J. Landsgesell, C. Holm, J. Chem. Theory Comput., DOI: 10.1021/acs.jctc.6b00791 (2016)Google Scholar
  27. 27.
    W.K. Hastings, Biometrika 57, 97 (1970)MathSciNetCrossRefGoogle Scholar
  28. 28.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, USA, 2002)Google Scholar
  29. 29.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  30. 30.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)ADSCrossRefGoogle Scholar
  31. 31.
    R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (CRC Press, Boca Raton, USA, 1988)Google Scholar
  32. 32.
    K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    H.-J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Košovan, C. Holm, in M.A. Schweitzer, ed., Meshfree Methods for Partial Differential Equations VI, volume 89 of Lecture Notes in Computational Science and Engineering (Springer, Berlin, Germany, 2013), pp. 1–23Google Scholar
  35. 35.
    R.J. Hunter, Foundations of Colloid Science (Oxford University Press, Oxford, UK, 2001)Google Scholar
  36. 36.
    A. Ramos, S. López, R. López, S. Fiol, F. Arce, J.M. Antelo, Analusis 27, 414 (1999)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Institute for Computational Physics, University of StuttgartStuttgartGermany

Personalised recommendations