Abstract
The reaction ensemble and the constant pH method are well-known chemical equilibrium approaches to simulate protonation and deprotonation reactions in classical molecular dynamics and Monte Carlo simulations. In this article, we demonstrate the similarity between both methods under certain conditions. We perform molecular dynamics simulations of a weak polyelectrolyte in order to compare the titration curves obtained by both approaches. Our findings reveal a good agreement between the methods when the reaction ensemble is used to sweep the reaction constant. Pronounced differences between the reaction ensemble and the constant pH method can be observed for stronger acids and bases in terms of adaptive pH values. These deviations are due to the presence of explicit protons in the reaction ensemble method which induce a screening of electrostatic interactions between the charged titrable groups of the polyelectrolyte. The outcomes of our simulation hint to a better applicability of the reaction ensemble method for systems in confined geometries and titrable groups in polyelectrolytes with different pK a values.
This is a preview of subscription content, log in to check access.
Change history
21 May 2019
In the final print version of the article formulas (11) and (12) are wrong. The formulas should read in accordance with reference [1]:
21 May 2019
In the final print version of the article formulas (11) and (12) are wrong.
References
- 1.
W. Richtering, Progr. Colloid Polym. Sci. 133, 9 (2006)
- 2.
J.M. Berg, ed., Biochemistry (Freeman, New York, NY, USA, 2015)
- 3.
M. Castelnovo, P. Sens, J.-F. Joanny, Eur. Phys. J. E 1, 115 (2000)
- 4.
C. Shi, J.A. Wallace, J.K. Shen, Biophys. J. 102, 1590 (2012)
- 5.
M. Lund, B. Jönsson, Biochemistry 44, 5722 (2005)
- 6.
M. Lund, B. Jönsson, Q. Rev. Biophys. 46, 265 (2013)
- 7.
S.E. Harnung, M.S. Johnson, Chemistry and the Environment (Cambridge University Press, Cambridge, UK, 2012)
- 8.
J.N. Butler, Ionic Equilibrium: Solubility and pH Calculations (John Wiley & Sons, New York, NY, USA, 1998)
- 9.
P.W. Atkins, J. de Paula, Physical Chemistry (Oxford University Press, Oxford, UK, 2010)
- 10.
M. Müller, ed. Polyelectrolyte Complexes in the Dispersed and Solid State II: Application Aspects, volume 256 of Adv. Polym. Sci. (Springer, Berlin, Germany, 2013)
- 11.
C.E. Reed, W.F. Reed, J. Chem. Phys. 96, 1609 (1992)
- 12.
M. Ullner, B. Jönsson, B. Söderberg, C. Peterson, J. Chem. Phys. 104, 3048 (1996)
- 13.
M. Ullner, B. Jönsson, Macromolecules 29, 6645 (1996)
- 14.
M. Ullner, C.E. Woodward, Macromolecules 33, 7144 (2000)
- 15.
B. Jönsson, M. Ullner, C. Peterson, O. Sommelius, B. Söderberg, J. Phys. Chem. 100, 409 (1996)
- 16.
S. Uyaver, C. Seidel, Macromolecules 42, 1352 (2009)
- 17.
F. Carnal, S. Stoll, J. Chem. Phys. 134, 044909 (2011)
- 18.
A.K.N. Nair, S. Uyaver, S. Sun, J. Chem. Phys. 141, 134905 (2014)
- 19.
J. Mongan, D.A. Case, J.A. McCammon, J. Comput. Chem. 25, 2038 (2004)
- 20.
C. Heath Turner, J.K. Brennan, M. Lisal, W.R. Smith, J.K. Johnson, K.E. Gubbins, Mol. Simul. 34, 119 (2008)
- 21.
W. Smith, B. Triska, J. Chem. Phys. 100, 3019 (1994)
- 22.
J.K. Johnson, A.Z. Panagiotopoulos, K.E. Gubbins, Mol. Phys. 81, 717 (1994)
- 23.
A. Panagiotopoulos, J. Phys. Cond. Matt. 21, 424113 (2009)
- 24.
F. Uhlik, P. Kosovan, Z. Limpouchova, K. Prochazka, O.V. Borisov, F.A. Leermakers, Macromolecules 47, 4004 (2014)
- 25.
F. Uhlík, P. Košovan, E.B. Zhulina, O.V. Borisov, Soft Matter 12, 4846 (2016)
- 26.
J. Landsgesell, C. Holm, J. Chem. Theory Comput., DOI: 10.1021/acs.jctc.6b00791 (2016)
- 27.
W.K. Hastings, Biometrika 57, 97 (1970)
- 28.
D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, San Diego, USA, 2002)
- 29.
N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)
- 30.
J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)
- 31.
R.W. Hockney, J.W. Eastwood, Computer Simulation Using Particles (CRC Press, Boca Raton, USA, 1988)
- 32.
K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990)
- 33.
H.-J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006)
- 34.
A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Košovan, C. Holm, in M.A. Schweitzer, ed., Meshfree Methods for Partial Differential Equations VI, volume 89 of Lecture Notes in Computational Science and Engineering (Springer, Berlin, Germany, 2013), pp. 1–23
- 35.
R.J. Hunter, Foundations of Colloid Science (Oxford University Press, Oxford, UK, 2001)
- 36.
A. Ramos, S. López, R. López, S. Fiol, F. Arce, J.M. Antelo, Analusis 27, 414 (1999)
Author information
Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Landsgesell, J., Holm, C. & Smiatek, J. Simulation of weak polyelectrolytes: a comparison between the constant pH and the reaction ensemble method. Eur. Phys. J. Spec. Top. 226, 725–736 (2017). https://doi.org/10.1140/epjst/e2016-60324-3
Received:
Revised:
Published:
Issue Date: