Advertisement

The European Physical Journal Special Topics

, Volume 226, Issue 5, pp 1017–1029 | Cite as

Melting of orientational degrees of freedom

  • A. Aznar
  • P. Lloveras
  • M. Barrio
  • J. -Ll. Tamarit
Regular Article
Part of the following topical collections:
  1. Phase Equilibria and Their Applications

Abstract

We use calorimetry and dilatometry under hydrostatic pressure, X-ray powder diffraction and available literature data in a series of composition-related orientationally disordered (plastic) crystals to characterize both the plastic and melting transitions and investigate relationships between associated thermodynamic properties. First, general common trends are identified: (i) The temperature range of stability of the plastic phase T m -T t (where T t and T m are the plastic and melting transition temperatures, respectively) increases with increasing pressure and (ii) both the rate of this increase, d(T m -T t )/dp, and the entropy change across the plastic transition analyzed as function of the ratio T t /T m are quite independent of the particular compound. However, the dependence of the entropy change at the melting transition on T t /T m at high pressures deviates from the behavior observed at normal pressure for these and other plastic crystals. Second, we find that the usual errors associated with the estimations of second-order contributions in the Clausius-Clapeyron equation are high and thus these terms can be disregarded in practice. Instead, we successfully test the validity of the Clausius-Clapeyron equation at high pressure from direct measurements.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Murrill and L. Breed, Thermochim. Acta 1, 239 (1970)CrossRefGoogle Scholar
  2. 2.
    J.-Ll. Tamarit, B. Legendre, J.M. Buisine, Mol. Cryst. Liq. Cryst. 250, 347 (1994)CrossRefGoogle Scholar
  3. 3.
    D.K. Benson, W. Burrows, J.D. Webb, Sol. Energy Mater. 13, 133 (1986)CrossRefGoogle Scholar
  4. 4.
    M. Barrio, J. Font, D.O. López, J. Muntasell, J.-Ll. Tamarit, Sol. Energy Mater. Sol. Cells, 27, 127 (1992)CrossRefGoogle Scholar
  5. 5.
    T. Clark, M.A. McKervey, H. Mackle, J.J. Rooney, J. Chem. Soc., Faraday Trans. 1 70, 1279 (1974)CrossRefGoogle Scholar
  6. 6.
    T. Clark, T. Mc. O. Knox, H. Mackle, M.A. McKervey, J. Chem. Soc., Faraday Trans. 1 73, 1224 (1977)CrossRefGoogle Scholar
  7. 7.
    G.J. Kabo, A.A. Kozyro, M. Frenkel, A.V. Blokhin, Mol. Cryst. Liq. Cryst. 326, 333 (1999)CrossRefGoogle Scholar
  8. 8.
    M.B. Charapennikau, A.V. Blokhin, A.G. Kabo, G.J. Kabo, J. Chem. Thermodyn. 35, 145 (2003)CrossRefGoogle Scholar
  9. 9.
    J.-Ll. Tamarit, I.B. Rietveld, M. Barrio, R. Céolin, J. Mol. Struc. 1078, 3 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    J. Reuter, D. Büsing, J.-Ll. Tamarit, A. Würflinger, J. Mater Chem. 7, 41 (1997)CrossRefGoogle Scholar
  11. 11.
    M. Barrio, P. de Oliveira, R. Céolin, D.O. López, J.-Ll. Tamarit, Chem. Mater. 14, 851 (2002)CrossRefGoogle Scholar
  12. 12.
    Ph. Negrier, L.C. Pardo, J. Salud, J.-Ll. Tamarit, M. Barrio, D.O. López, A. Würflinger, D. Mondieig, Chem. Mat. 14, 1921 (2002)CrossRefGoogle Scholar
  13. 13.
    J.-Ll. Tamarit, M. Barrio, L.C. Pardo, P. Negrier, D. Mondieig, J. Phys.: Condens. Matter. 20, 244110 (2008)ADSGoogle Scholar
  14. 14.
    M. Barrio, J.-Ll. Tamarit, Ph. Negrier, L.C. Pardo, N. Veglio, D. Mondieig, New J. Chem. 32, 232 (2008)CrossRefGoogle Scholar
  15. 15.
    B. Parat, L.C. Pardo, M. Barrio, J.-Ll. Tamarit, Ph. Negrier, J. Salud, D.O. López, D. Mondieig, Chem. Mater. 17, 3359 (2005)CrossRefGoogle Scholar
  16. 16.
    R. Levit, M. Barrio, N. Veglio, J.-Ll. Tamarit, Ph. Negrier, L.C. Pardo, J. Sanchez-Marcos, D. Mondieig, J. Phys. Chem. B 112, 13916 (2008)CrossRefGoogle Scholar
  17. 17.
    Ph. Negrier, M. Barrio, J.-Ll. Tamarit, N. Veglio, D. Mondieig, Cryst. Growth & Des. 10, 2793 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Woznyj, F.X. Prielmeier, H.–D. Lüdemann, Z. Naturforsch. 39a, 800 (1984)ADSGoogle Scholar
  19. 19.
    H.G. Kreul, R. Waldinger, A. Würflinger, Z. Naturforsch. 47a, 1127 (1992)ADSGoogle Scholar
  20. 20.
    P.F. McMillan, Nat. Mater. 6, 7 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    L. Ciabini, M. Santoro, F.A. Gorelli, R. Bini, V. Schettino, S. Raugei, Nat. Mater. 6, 39 (2007)ADSCrossRefGoogle Scholar
  22. 22.
    P.W. Bridgman, Phys. Rev. 6, 94 (1915)ADSCrossRefGoogle Scholar
  23. 23.
    W. Wagner, A. Saul, A. Pruss, J. Phys. Chem. Ref. Data 23, 515 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    T. Hasebe, H. Chihara, Bull. Chem. Soc. Jpn. 59, 1141 (1986)CrossRefGoogle Scholar
  25. 25.
    J. Salud, M. Barrio, D.O. López, J.-Ll. Tamarit, X. Alcobé, J. Appl. Cryst. 31, 748 (1998)CrossRefGoogle Scholar
  26. 26.
    J. Salud, D.O. López, M. Barrio, J.-Ll. Tamarit, J. Mater. Chem. 9, 909 (1999)CrossRefGoogle Scholar
  27. 27.
    K. Arvidsson, E.F. Westrum.Jr., J. Chem. Thermodyn. 4, 449 (1972)CrossRefGoogle Scholar
  28. 28.
    K. Suenaga, T. Matsuo, H. Suga, Thermochim. Acta 163, 263 (1990)CrossRefGoogle Scholar
  29. 29.
    R. Landau, A. Würflinger, Rev. Sci. Instrum. 51, 533 (1980)ADSCrossRefGoogle Scholar
  30. 30.
    E.K.H. Salje, Phase Transitions in Ferroelastic and Co-elastic Crystals (Cambridge University Press, Cambridge, UK, 1990)Google Scholar
  31. 31.
    R. Kamae, K. Suenaga, T. Matsuo, H. Suga, J. Chem. Thermodyn. 33, 471 (2001)CrossRefGoogle Scholar
  32. 32.
    D. Chandra, W.-M. Chen, V. Gandikotta, D.W. Lindle, Z. Phys. Chem. 216, 1433 (2002)Google Scholar
  33. 33.
    S. Divi, R. Chellappa, D. Chandra, J. Chem. Thermodyn. 38, 1312 (2006)CrossRefGoogle Scholar
  34. 34.
    M. Jenau, J. Reuter, J.-Ll. Tamarit, A. Würflinger, J. Chem. Soc., Faraday Trans. 92, 1899 (1996)CrossRefGoogle Scholar
  35. 35.
    M. Rittmeier-Kettner, G.M. Schneider, Thermochim. Acta 266, 185 (1995)CrossRefGoogle Scholar
  36. 36.
    M. Barrio, D.O. Lopez, J.-Ll. Tamarit, Ph. Negrier, Y. Haget. J. Mater. Chem. 5, 431 (1995)CrossRefGoogle Scholar
  37. 37.
    J. Salud, D.O. López, M. Barrio, J.-Ll. Tamarit, H.A.J. Oonk, P. Negrier, Y. Haget, J. Solid State Chem. 133, 536 (1997)ADSCrossRefGoogle Scholar
  38. 38.
    S. Urban, Z. Tomkowicz, J. Mayer, T. Waluga, Acta Phys. Pol. A48, 61 (1975)Google Scholar
  39. 39.
    J. Font, J. Muntasell, Mater. Res. Bull. 29, 1091 (1994)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2017

Authors and Affiliations

  1. 1.Departament de Física, ETSEIB, Universitat Politècnica de CatalunyaCataloniaSpain

Personalised recommendations