Skip to main content
Log in

Kinetics of ferromagnetic ordering in 3D Ising model: how far do we understand the case of a zero temperature quench?

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study (nonconserved) phase ordering dynamics in the three-dimensional nearest-neighbor Ising model, following rapid quenches from infinite to zero temperature. Results on various aspects, viz., domain growth, persistence, aging and pattern, have been obtained via Monte Carlo simulations of the model on simple cubic lattice. These are analyzed via state-of-the-art methods, including the finite-size scaling, and compared with those for quenches to a temperature above the roughening transition. Each of these properties exhibit remarkably different behavior at the above mentioned final temperatures. Such a temperature dependence is absent in the two-dimensional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, UK, 2002)

  2. A.J. Bray, Adv. Phys. 51, 481 (2002)

    Article  ADS  Google Scholar 

  3. S. Puri, V. Wadhawan (eds.), Kinetics of Phase Transitions (CRC Press, Boca Raton, 2009)

  4. S. Dattagupta, S. Puri, Dissipative Phenomena in Condensed Matter: Some Applications (Springer-Verlag, Heidelberg, 2004)

  5. M. Henkel, M. Pleimling, Non-equilibrium Phase Transitions Vol. 2 (Springer, Netherlands, 2010)

  6. S.M. Allen, J.W. Cahn, Acta Metall. 27, 1085 (1979)

    Article  Google Scholar 

  7. D.S. Fisher, D.A. Huse, Phys. Rev. B 38, 373 (1988)

    Article  ADS  Google Scholar 

  8. F. Corberi, E. Lippiello, M. Zannetti, Phys. Rev. E 74, 041106 (2006)

    Article  ADS  Google Scholar 

  9. F. Liu, G.F. Mazenko, Phys. Rev. B 44, 9185 (1991)

    Article  ADS  Google Scholar 

  10. S.N. Majumdar, D.A. Huse, Phys. Rev. E 52, 270 (1995)

    Article  ADS  Google Scholar 

  11. C. Yeung, M. Rao, R.C. Desai, Phys. Rev. E 53, 3073 (1996)

    Article  ADS  Google Scholar 

  12. M. Henkel, A. Picone, M. Pleimling, Europhys. Lett. 68, 191 (2004)

    Article  ADS  Google Scholar 

  13. A.J. Bray, S.N. Majumdar, G. Schehr, Adv. Phys. 62, 225 (2013)

    Article  ADS  Google Scholar 

  14. S.N. Majumdar, C. Sire, A.J. Bray, S.J. Cornell, Phys. Rev. Lett. 77, 2867 (1996)

    Article  ADS  Google Scholar 

  15. S.N. Majumdar, A.J. Bray, S.J. Cornell, C. Sire, Phys. Rev. Lett. 77, 3704 (1996)

    Article  ADS  Google Scholar 

  16. B. Derrida, Phys. Rev. E 55, 3705 (1997)

    Article  ADS  Google Scholar 

  17. D. Stauffer, Int. J. Mod. Phys. C 8, 361 (1997)

    Article  ADS  Google Scholar 

  18. G. Manoj, P. Ray, Phys. Rev. E 62, 7755 (2000)

    Article  ADS  Google Scholar 

  19. B. Derrida, A.J. Bray, C. Godrèche, J. Phys. A 27, L357 (1994)

    Article  ADS  Google Scholar 

  20. D. Stauffer, J. Phys. A 27, 5029 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  21. D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2009)

  22. T. Ohta, D. Jasnow, K. Kawasaki, Phys. Rev. Lett. 49, 1223 (1982)

    Article  ADS  Google Scholar 

  23. J. Midya, S. Majumder, S.K. Das, J. Phys.: Condens. Matter 26, 452202 (2014)

    ADS  Google Scholar 

  24. T. Blanchard, L.F. Cugliandolo, M. Picco, J. Stat. Mech. P12021 (2014)

  25. S. Chakraborty, S.K. Das, Eur. Phys. J. B 88, 160 (2015)

    Article  ADS  Google Scholar 

  26. J.G. Amar, F. Family, Bull. Am. Phys. Soc. 34, 491 (1989)

    Google Scholar 

  27. J.D. Shore, M. Holzer, J.P. Sethna, Phys. Rev. B 46, 11376 (1992)

    Article  ADS  Google Scholar 

  28. S. Cueille, C. Sire, J. Phys. A 30, L791 (1997)

    Article  ADS  Google Scholar 

  29. F. Corberi, E. Lippiello, M. Zannetti, Phys. Rev. E 78, 011109 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  30. V. Spirin, P.L. Krapivsky, S. Redner, Phys. Rev. E 63, 036118 (2001)

    Article  ADS  Google Scholar 

  31. V. Spirin, P.L. Krapivsky, S. Redner, Phys. Rev. E 65, 016119 (2001)

    Article  ADS  Google Scholar 

  32. J. Olejarz, P.L. Krapivsky, S. Redner, Phys. Rev. E 83, 051104 (2011)

    Article  ADS  Google Scholar 

  33. J. Olejarz, P.L. Krapivsky, S. Redner, Phys. Rev. E 83, 030104(R) (2011)

    Article  ADS  Google Scholar 

  34. G. Brown, P.A. Rikvold, Phys. Rev. E 65, 036137 (2002)

    Article  ADS  Google Scholar 

  35. S. Chakraborty, S.K. Das, Phys. Rev. E 93, 032139 (2016)

    Article  ADS  Google Scholar 

  36. R.J. Glauber, J. Math. Phys. 4, 294 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  37. S. Majumder, S.K. Das, Phys. Rev. E 81, 050102 (2010)

    Article  ADS  Google Scholar 

  38. F. Corberi, M. Zannetti, E. Lippiello, A. Vezzani, arXiv:1506.01199 (2015)

  39. D.A. Huse, Phys. Rev. B, 34, 7845 (1986)

    Article  ADS  Google Scholar 

  40. M.E. Fisher, in Critical Phenomena, edited by M.S. Green (Academic, London, 1971)

  41. D.W. Heermann, L. Yixue, K. Binder, Physica A 230, 132 (1996)

    Article  ADS  Google Scholar 

  42. S.K. Das, S. Roy, S. Majumder, S. Ahmad, Europhys. Lett. 97, 66006 (2012)

    Article  ADS  Google Scholar 

  43. J. Midya, S. Majumder, S.K. Das, Phys. Rev. E 92, 022124 (2015)

    Article  ADS  Google Scholar 

  44. M. Henkel, M. Pleimling, Phys. Rev. E 68, 065101 (R) (2003)

    Article  ADS  Google Scholar 

  45. E. Lorenz, W. Janke, Europhys. Lett. 77, 10003 (2007)

    Article  ADS  Google Scholar 

  46. C. Yeung, Phys. Rev. Lett. 61, 1135 (1988)

    Article  ADS  Google Scholar 

  47. S.N. Majumdar, D.A. Huse, B.D. Lubachevsky, Phys. Rev. Lett. 73, 182 (1994)

    Article  ADS  Google Scholar 

  48. G. Porod, in Small-Angle X-ray Scattering, edited by O. Glatter, O. Kratky, (Academic press, New York, 1982), p. 42

  49. H. van Beijeren, I. Nolden, in Structures and Dynamics of Surfaces II: Phenomena, Models and Methods, Topics in Current Physics, edited by W. Schommers, P. von Blanckenhagen (Berlin, Springer, 1987), vol. 43

  50. M.O. Hase, S.R. Salinas, J. Phys.: Math. Gen. 39, 4875 (2006)

    ADS  Google Scholar 

  51. M. Ebbinghaus, H. Grandclaude, M. Henkel, Eur. Phys. J. B 63, 85 (2008)

    Article  ADS  Google Scholar 

  52. Y. Oono, S. Puri, Mod. Phys. Lett. B 2, 861 (1988)

    Article  ADS  Google Scholar 

  53. D.B. Abraham, P.J. Upton, Phys. Rev. B 39, 736 (1989)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir K. Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S.K., Chakraborty, S. Kinetics of ferromagnetic ordering in 3D Ising model: how far do we understand the case of a zero temperature quench?. Eur. Phys. J. Spec. Top. 226, 765–777 (2017). https://doi.org/10.1140/epjst/e2016-60313-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjst/e2016-60313-6

Navigation